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Abstract
Humans continue learning throughout their lifetime in order to adapt to the changing

world and advance as the number of challenges to face grows. When faced with a partic-
ular task to solve, they ask questions in the right moments to gather information about
it and resolve uncertainty about any misunderstandings before actually solving the task.
Task-oriented dialogue systems center around fulfilling the goal or task of a user during a
conversation, where the goal is restricted to a certain, fixed, scope of possibilities such as
travel planning and schedule organization. Unlike humans, these systems lack the ability for
continual learning and neglect the important skill of information gathering or uncertainty
reduction in their training. Nevertheless, the potential range of tasks a dialogue system can
assist with is vast due to the expansive nature of human communication. Consequently,
the scope of operation inevitably expands and the circumstances evolve, which necessi-
tates the human-like abilities of continual learning. In addition, the dialogue policy, the
decision-making component of the system that selects the response to the user, is trained in
a trial-and-error process to maximize goal fulfillment. This training procedure is slow, since
the only feedback given by goal fulfillment is obtained at the end of a conversation.

The main contributions of this thesis are as follows. Firstly, we propose an additional
feedback signal for learning called information gain that is provided in every turn of the
conversation and thus increases sample efficiency. Information gain encourages the dialogue
policy to gather information about the user goal and reduce uncertainty in its understanding,
which is an essential step preceding goal fulfillment. Our experiments with different tasks
and noise settings show that the additional usage of information gain leads to faster learning
and a better final policy.

Secondly, we are the first to introduce continual reinforcement learning for dialogue
policies and propose a novel, dynamic architecture called dynamic dialogue policy transformer
(DDPT). DDPT is based on the Transformer and a pre-trained language model and further
advanced with a domain gate and hard-attention to allow dynamic input and output, forward
transfer and dealing with many possible tasks. In the continual learning setup where tasks
are introduced sequentially over time, our proposal DDPT achieves significant forward
transfer and robustness against forgetting, while requiring no growth in neural network
parameter size. Thirdly, we propose realistic environments for continual reinforcement learning
of dialogue policies (RECORD), a more general and controllable continual learning setup with
the goal of modeling the most important challenges in continual dialogue policy learning.
Furthermore, we propose the usage of lifetime return and meta-gradient reinforcement
learning for dialogue policy optimization for more robust learning and better adaptation
during continual learning. We test multiple configurations of RECORD with different
user behaviors and algorithms, where our proposals of lifetime return and meta-gradient
reinforcement learning lead to consistent improvements.

Our results on information gain warrant a more widespread application to any task
where information acquisition and uncertainty reduction plays a significant role, such as
general information retrieval through dialogue. Furthermore, our contributions on continual
learning pave the way for future advancements that move the field of dialogue policies from
static to dynamic learning. In that realm, the versatility of RECORD lays the foundation for
training and testing continual learning abilities of any task-oriented dialogue system.
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Chapter 1

Introduction

The world is ever-changing. To survive in this complex environment, humankind as intel-
ligent species has been equipped with various skills that enable continual learning. The
capability for continual learning is a remarkable trait inherent in humans, enabling them
to consistently acquire new knowledge and skills by drawing upon past experiences while
being robust to forgetting. From infancy, individuals begin by mastering basic motor skills,
which serve as building blocks for crawling, walking, and eventually running. In the realm
of language, they progress from learning individual words to constructing intricate sentence
structures and even acquiring multiple languages. Similarly, in mathematics, they grasp
simple operations like addition and multiplication, laying the groundwork for complex
calculations in the future. This ongoing ability to learn is an essential component of human
development, allowing individuals to navigate the ever-evolving world that surrounds them
(Bremner et al., 2012; Power and Schlaggar, 2016).

The success of humanity can be partially attributed to the collaborative efforts of indi-
viduals assisting one another in various tasks. Whenever someone encountered a particular
challenge, they sought out an expert who could provide guidance and support in accomplish-
ing that task. Effective communication through dialogue played a crucial role in identifying
the underlying problem and working together to find a solution. Furthermore, the expert’s
information seeking behavior is essential in comprehending the problem at hand.

Similar to human experts, task-oriented dialogue systems strive to help humans in
achieving their task through dialogue interaction. The tremendous amount of potential tasks
necessitates the human-like abilities of continual learning as well as the information seeking
behavior for these systems. In this thesis, we study how the information seeking behavior
can be reinforced in dialogue systems to guide their learning as well as how dialogue systems
are able to continue learning throughout their lifetime.

1.1 Task-oriented Dialogue Systems

A task-oriented dialogue system (TOD system) helps the user to fulfill a certain task. This can
be for instance booking a flight, finding popular local attractions in a new city or querying
the weather. The system here is not restricted to one task per dialogue but should for instance
be able to book a hotel, find a restaurant and additionally book a taxi to commute between
the two locations (Budzianowski et al., 2018). In order to find adequate entities such as
restaurants or hotels, the system is equipped with an external database for entity retrieval. In
contrast to chatbots which try to maximize user engagement, TOD systems aim to fulfill the
task as quickly as possible. TOD systems operate within certain boundaries that are defined
by an underlying ontology, which is usually hand-crafted by the designers. The ontology is
comprised of domains, e.g. restaurants or hotels, domain-specific slots, e.g. the area or price,
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I am looking for an
Italian restaurant

Restaurant-inform
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Do you have a
preferred area?

FIGURE 1.1: Overview of one dialogue turn during a conversation. The user text
will be converted by the natural language understanding (NLU) component into
a semantic representation, i.e. the user action. Subsequently, the dialogue state
tracker (DST) updates its dialogue state and passes it further to the dialogue
policy. The dialogue policy selects an action that is driving the dialogue towards
task success. The policy can query the database for obtaining entities such as
restaurants. Finally, the natural language generation (NLG) component converts

the semantic system action into natural language.

and values that a slot can take, e.g west, east, north, south, and center for the area slot. These
concepts together define the scope of information that can be understood by the system,
such as the restaurant area or the number of hotel stars. Moreover, the ontology defines the
actions of the system for each such domain, such as booking a hotel room or providing the
phone number of the requested restaurant.

In a conversation it is crucial to understand what the user just said and remember what
has been uttered before. Based on that information, the system has to come up with an
appropriate response. In modular TOD systems these capabilities are modeled by dedicated
components as can be seen in Figure 1.1. The natural language understanding (NLU) module
is the first component in a dialogue system and is responsible for mapping a given user
utterance into a semantic representation that decodes the meaning (Namazifar et al., 2021;
Tur et al., 2012). It is tasked with inferring the user intent as well as slot-value pairs. As an
example, the utterance "I am looking for an Italian restaurant" can be mapped to the semantic
representation restaurant-inform-food-Italian, also called a dialogue act. While the NLU
component deals with the current utterance, the subsequent dialogue state tracking (DST)
component is responsible for tracking the dialogue history and in every step updates its
dialogue state (Heck et al., 2020; Lee et al., 2019; Ramadan et al., 2018). The main objective of
the DST is to track the user goal throughout the conversation. In order to take uncertainty
about the dialogue history into account, it is also possible to produce a belief state, which
defines a probability distribution over possible dialogue states (van Niekerk et al., 2020;
Young et al., 2007). This helps in propagating uncertainty through the pipeline and allows
subsequent components to produce a more robust behavior (van Niekerk et al., 2021; Young
et al., 2007). Based on the dialogue or belief state, the dialogue policy component decides
on a semantic action to take such as requesting the area of the restaurant or informing the
phone number of the hotel (Levin and Pieraccini, 1997; Williams and Young, 2007). The
dialogue policy is the planning component of the system and steers the conversation towards
task success. When deciding on an action to take, the policy can additionally query an
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accompanying data base for retrieving matching entities. Finally the semantic policy action
is transformed into natural language by the natural language generation (NLG) module
(Peng et al., 2020; Wen et al., 2015). Spoken dialogue systems are additionally equipped with
an automatic speech recognizer (Lu et al., 2015) as well as a text-to-speech synthesizer (Oord
et al., 2016).

One turn in a dialogue is given by a user utterance and the corresponding system
utterance as depicted in Figure 1.1. A dialogue is comprised of a sequence of turns where
the policy tries to find the best possible response in every turn of the dialogue in order
to accomplish the user goal. Consequently, the dialogue policy has to solve a sequential
decision making problem during interaction, which motivates the optimization through
reinforcement learning (RL) (Levin and Pieraccini, 1997).

1.2 Dialogue Policy Optimization through Reinforcement
Learning

This work focuses on dialogue policy optimization through reinforcement learning (RL).
Reinforcement learning is a learning paradigm where a RL agent learns through a trial-error
process by interacting with its environment (Sutton et al., 1999). In every step, the RL agent’s
policy (this is where the name dialogue policy comes from) maps states into actions so as to
maximize the sum of a numerical reward signal, where this reward signal can be delayed.
The action taken can influence the next state and hence the future of all states. This also
holds for dialogue where what is said now can have an effect on future responses. In terms
of dialogue, the dialogue policy interacts with a user (the environment in this case), collects
experience through that interaction, obtains rewards (usually defined by whether the user
goal was achieved and how efficient the dialogue was) and learns from it to improve itself.
Since interactions with real humans are costly and time-consuming, researchers usually
employ user simulators for their studies (Gur et al., 2018; Lin et al., 2021; Schatzmann et al.,
2007).

1.3 Challenges in Dialogue Policy Learning

1.3.1 Sparse Rewards

Task-oriented systems focus on achieving the user’s objective, which can only be assessed
once the conversation is complete. The dialogue policy obtains a feedback signal, the reward,
at the end that measures the success or failure of the dialogue and an uninformative small
negative reward in every step to encourage fulfillment of the goal in the shortest amount
of time (see also Figure 1.2). The reward is hence sparse in the sense that only few turns
give the policy informative feedback. Consequently, the policy faces the challenge of credit
assignment, meaning it has to find the responses of the dialogue that are responsible for
task success or failure and reinforce or suppress them for future behavior. This analogous
problem also occurs in chess for instance, where one has to find the sequence of moves that
eventually lead to a winning or losing of the game. Since reinforcement learning relies on
trial-and-error, coupled with sparse rewards, numerous interactions are necessary to learn
optimized behavior. This is especially problematic if dialogue systems are supposed to learn
in interaction with real users and not only in simulation.
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Hello, I need a restaurant towards the north.

There is a wonderful restaurant in the centre of town.

It should be in the north!

The address of an Italian restaurant in the north is Campsite street 89.

I am not interested in Italian food though.

...

Goodbye!

Success/Failure Informative Reward

Hello, I need a restaurant towards the north.

The restaurant should be in the north, not centre, right?

Yes, exactly.

Is there a specific cuisine you are interested in?

I would like to eat german food.

...

Goodbye!

Dialogue System Human Behaviour

Inform
ation seeking

FIGURE 1.2: Left: as a task-oriented dialogue can only be evaluated for success
or failure once it is finished, the corresponding informative reward for training
the dialogue system can be only obtained at the end, leading to sample inefficient
learning since it is difficult to judge which outputs should be reinforced in the
future and which should be suppressed. Right: humans naturally resolve uncer-
tainty and seek information about the task during a conversation, potentially

rewarding themselves without external feedback.

The integral first step for solving a user goal is to understand the goal in the first place.
Humans ask question to get to know each other or resolve uncertainty naturally during
the conversation. An example where a human operator naturally resolves uncertainty and
asks for information, while the dialogue system fails to do so, can be seen in Figure 1.2. The
question is whether this information seeking skill can be reinforced in the dialogue policy
through a reward in order to guide learning and provide more dense reward signals.

1.3.2 Continual Dialogue Policy Learning

Humans continuously face challenges during their lifetime, seamlessly comprehend new
knowledge and master new skills (Grossberg, 2013). We often take the ability to continually
learn for granted and ignore how remarkable it actually is. The brain requires plasticity in
order to adapt to changes rapidly. At the same time, it has to stabilize the existing knowledge
to prevent forgetting. The brain excels at solving these two contradicting tasks, what is
known in neuroscience as plasticity-stability dilemma (Grossberg, 1982). When we learn
something new, we rarely start from scratch but leverage already existing knowledge to
speed up our learning (Barnett and Ceci, 2002; Bremner et al., 2012) - learning one language
becomes easier once other similar languages are already known. When we are faced with a
specific task, we put our attention on the important information and ignore irrelevant one.
Moreover, we master all of that with limited memory and neural capacity.

Similarly to humans, intelligent task-oriented dialogue systems that are meant to be
assisting humans throughout their lifetime will face ongoing challenges and tasks as well.
The system might start off with helping users to find restaurants in their favorite city. Soon,
users might want to also book hotels or flights for their journey. Another prominent example
was recently given by the Corona pandemic, where a dialogue system could have helped
users to book vaccination or test appointments. The tremendous amount of tasks that a
task-oriented dialogue system can potentially help with makes it absolutely inevitable to
study the circumstances of continual learning.
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FIGURE 1.3: Left: dialogue policy research has so far focused mainly on fixed
environments with a fixed number of tasks (e.g. restaurant, hotel, flights, and
schedule) that are given by a pre-defined ontology. Right: humans continuously
learn throughout their lifetime and master new skills over time, building on
already acquired knowledge. How can we equip dialogue policies with continual

learning abilities?

Research on the dialogue policy has so far focused mainly on how to excel in a fixed
environment, including a fixed user and ontology (Su et al., 2016; Takanobu et al., 2019;
Weisz et al., 2018; Wesselmann et al., 2019). As depicted in Figure 1.3, the policy is challenged
on a single or multiple tasks such as providing restaurant or hotel information and the goal
is to maximize performance in this static environment. Many advancements have been made
to reach as high performance as possible while being sample efficient (Lipton et al., 2018;
Weisz et al., 2018).

In a parallel line of work, researchers looked into how policies can be built in order to
transfer their knowledge from one domain to another (Chen et al., 2018; Chen et al., 2020;
Lin et al., 2021; Wang et al., 2015; Xu et al., 2020). These works assumed that the possible
information being passed to the dialogue policy as well as the actions have a certain structure
that allowed them to build models that can be used for multiple tasks without architectural
changes.

One of the key challenges that so far remained unaddressed in dialogue policy optimiza-
tion is the question of how the policy can continue learning over time. This starts with
fundamental challenges such as how new information or actions can be incorporated into
the policy, which arises through a growing ontology. It requires measurements for forgetting
and forward transfer to new tasks. Furthermore, we need to answer the question of what
constitutes a reasonable continual learning setup for dialogue policies.

1.4 Contributions

1. Information gain as intrinsic reward to reinforce information seeking behavior:
based on the observation that understanding the user goal is the first challenge before
any task can be fulfilled, we propose information gain for enhancing dialogue policy
learning. Information gain is an intrinsic reward that can be calculated in every turn
of the conversation, thus providing informative feedback in every step compared
to the sparse reward measuring task success. Information gain reinforces actions if
they gather new information of the user or resolve uncertainty, such as requests or
confirmations. We used a hierarchical dialogue policy with a dedicated information
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seeking policy and optimized it for maximizing information gain only. Experiments
in various domains and noise setups show that information gain leads to enhanced
learning as well as better final performance. Interactions with humans moreover
showed that the policy using information gain appropriately asks for information if
necessary.

2. A dynamic dialogue policy architecture for continual reinforcement learning: we are
the first to explore continual reinforcement learning for dialogue policies. We provide
a continual RL algorithm, baseline models and evaluation metrics to enable dialogue
policy research to go from static to dynamic learning. Moreover, we propose the
dynamic dialogue policy transformer (DDPT), that can incorporate new information
and actions seamlessly through descriptions and enables reasoning over a large amount
of domains by leveraging a hard attention mask on active domains. Additionally, it
leverages a domain gate for enabling zero-shot transfer to new domains. Experiments
with multiple continual learning setups validate that DDPT obtains strong zero-shot
capabilities as well as being robust to forgetting. Our architecture achieves that without
any growth in neural network parameter size

3. Learning with an open horizon in ever-changing dialogue circumstances: we propose
a novel continual learning framework called RECORD that models the most important
challenges for lifelong dialogue policy learning. In contrast to previous works, it
models 1) different users, 2) multi-domain dialogues, 3) reoccuring domains, and 4)
changing user demands. The framework allows flexible and controllable continual
learning setups and evaluates the performance of dialogue policies throughout their
lifetime. In addition, we propose the optimization of lifetime return and meta-gradient
reinforcement learning for taking long-term future into account and dynamically
adapting hyperparameters during learning. We equip two RL algorithms with lifetime
return optimization and meta-gradient RL and show that they outperform baselines in
a challenging approximate real world.

1.5 Thesis Structure

This thesis consists of eight chapters:

Chapter 1 presents a general introduction, setting the context and outlining the thesis objec-
tives.

Chapter 2 offers an overview of deep learning, explaining fundamental concepts and archi-
tectures.

Chapter 3 covers the necessary background on reinforcement learning, which will be used
for dialogue policy optimization.

Chapter 4 discusses dialogue policy modeling and challenges in more detail.

Chapter 5 introduces information gain as intrinsic reward for dialogue policy optimization
and showcases its benefit for accelerating the learning process.

Chapter 6 introduces the first work on continual reinforcement learning for the dialogue
policy, including baseline algorithms and a novel architecture based on the transformer.
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Chapter 7 introduces a more general and flexible continual learning setup for dialogue
policies and proposes algorithmic advancements based on lifetime return optimization
and meta-gradient RL.

Chapter 8 summarizes the thesis’s key findings, examines the implications of the presented
research, and suggests directions for future investigation.
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Chapter 2

Deep Learning

2.1 Neural Networks as Function Approximators

Imagine the task of classifying an image into one of several categories such as cats, dogs,
horses, etc. We can think of the image-category pairs as generated by an unknown function
funk : X −→ Y that takes images x as input and outputs the correct category y. We do not
have access to funk but only to a data set D containing pairs (xin, yout) produced by funk. The
goal is to produce an approximation f of funk, leveraging data set D, that obtains correct
predictions for images in D and generalizes well to novel images.

In order to produce such an approximation, we are required to first specify a function
class. The function class of artificial neural networks (ANN), or short neural networks, has
obtained a surge in popularity due to its powerful capabilities of feature extraction and
approximation. The empirical success of ANN is verified by the Universal Approximation
Theorem (Hornik et al., 1989) that states that any continuous function funk : K −→ Rm, where
K ⊂ Rn is compact1, can be approximated with a feed-forward neural network with two
layers. In the following sections we discuss popular neural network architectures and how
to optimize them.

2.2 Feed-forward Neural Networks

A feed-forward neural network (FFN) defines a mapping ŷ = f (x;θ) with learnable neural
network parameters θ. The FFN is organized in a sequence of layers f1, ..., fL, where the first
layer f1 is called the input layer, the last layer fL is called the output layer, and intermediate
layers are called hidden layers. These models are called feed-forward because information
flows through the layers without any feedback connections in which outputs of the model are
fed back into itself (Goodfellow et al., 2016). Given an input together with its input feature
vector x ∈ Rd0 , d0 ∈ N, (such as a flattened image), the computation of a feed-forward
neural network f with L layers is depicted in Figure 2.1 and given as follows:

f (x;θ) = fL ◦ ... ◦ fl ◦ ... ◦ f1(x), where fl(h) = ϕl(Wlh+ bl), (2.1)

where Wl ∈ Rdl×dl−1 and bl ∈ Rdl are learnable weight matrices and bias vectors, re-
spectively, and the operator ◦ denotes the composition of functions. The neural network
parameters θ are given by the set of all weight matrices and bias vectors. The number of
input and output neurons in layer l is dl−1 and dl, respectively. The number of layers define

1K ⊂ Rn is compact if it is closed and bounded.
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FIGURE 2.1: The architecture of a feed forward network (FFN). The input vector
x is fed through L layers, each layer being comprised of a learnable weight

matrixWl , bias vector bl , and an activation function ϕl .

the depth of the neural network, whereas the number of neurons within a layer determines
its width.

The different ϕl are called activation functions and are commonly applied element-wise if
given through a mapping from R to R. These functions are typically chosen to be non-linear
as the neural network can otherwise only model linear functions. If ϕl is the identity function,
the layer fl is called a linear layer. Popular activation functions are given by

ϕReLU : R→ R, x ↦→ max(0, x) (2.2)

ϕSigmoid : R→ R, x ↦→ 1
1 + e−x (2.3)

ϕTanh : R→ R, x ↦→ ex − e−x

ex + e−x (2.4)

The softmax activation function is typically used for mapping a general vector into a
vector of probabilities and given by

ϕsoftmax : Rd → Rd, x = [x1, ..., xd] ↦→
[︄

exi

∑j exj

]︄d

i=1

(2.5)

If the task of the neural network is regression, i.e. predicting a real-valued number, the
weight matrix WL is of size 1× dL−1 and f (x;θ) ∈ R. On the other hand, if the task is
classifying an input into one of Ncat categories {y1, ..., yNcat}, the weight matrixWL is of size
Ncat × dL−1 and consequently f (x;θ) ∈ RNcat . Moreover, it is common to set ϕL = ϕsoftmax
such that the output is a probability distribution

ŷ = f (x;θ) = [p(y1 | x;θ), ..., p(yNcat | x;θ)]. (2.6)
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An actual category ŷ is produced by sampling from ŷ = f (x;θ) or taking the category
with the highest probability.

The feed-forward neural network has the disadvantage that it can only process one input
feature vector, but not a sequence of input vectors that are required for processing a sequence
of words or a time series.

2.3 Recurrent Neural Networks

Recurrent neural networks (RNNs) are built for the purpose of processing a sequence of
input vectors X = (x1, ...,xi, ...,xM) that naturally occur for time series prediction or if a
sequence of words are required to be processed (such as in text classification or machine
translation). In every step i, a recurrent network with L > 1 layers f1, ..., fL obtains as input
not only the input feature vector xi ∈ Rd0 , but also additional hidden vectors h(l)i−1 ∈ Rdl

for every l = 1, ..., L − 1. The purpose of h(l)i−1 is to capture important information from
all previous steps x1, ...,xi−1, which constitutes it as a form of memory. For a step i, the
RNN calculations are performed as follows (and shown in Figure 2.2), where h(l)0 is typically
initialized as a vector of zeros if no other context information is available:

f1(xi,h
(1)
i−1) = h

(1)
i = ϕ1(W1xi +U1h

(1)
i−1 + b1), (2.7)

fl(h
(l−1)
i ,h(l)i−1) = h

(l)
i = ϕl(Wlh

(l−1)
i +Ulh

(l)
i−1 + bl), l = 2, ..., L− 1, (2.8)

fL(h
(L−1)
i ) = ϕL(WLh

(L−1)
i + bL), (2.9)

where Wl ∈ Rdl×dl−1 , Ul ∈ Rdl×dl and bl ∈ Rdl are learnable weight matrices and bias
vectors, respectively. The different ϕl are activation functions as before.

The equations lead to the following observations. Firstly, calculating the vectors for step
i requires the calculation for i− 1, such that no computational parallelism across steps is
possible. Secondly, the number of neural network parameters is increased compared to the
feed-forward network as we have additional weight matricesUl. Moreover, the same weight
matrices and bias vectors are used for every step. Thirdly, if h(l)0 is initialized as a vector of
zeros and the sequence of input vectors is of length 1, the RNN calculation coincides with
the calculation of the feed-forward network.

The vanilla RNN architecture as explained above has been advanced in subsequent works,
which led to long short-term memory networks (Hochreiter and Schmidhuber, 1997) and
gated recurrent units (Cho et al., 2014a) with improved memory and bidirectional RNNs
(Schuster and Paliwal, 1997) that leverage both past and future steps for calculating the
hidden vectors.

2.3.1 Encoder-Decoder RNNs

Consider the task of machine translation, where a sequence of words x1, ..., xi, ..., xM in a
source language has to be translated into a sequence of words y1, ..., yj, ..., yN in a target
language. In order to solve this task, one approach is to first extract feature vectors from
the sequence x1, ..., xi, ..., xM, i.e. encode it, and subsequently use the features to generate the
sequence y1, ..., yj, ..., yN, i.e. decode it. This idea resulted in the Encoder-Decoder RNN (Cho
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FIGURE 2.2: The architecture of a recurrent neural network (RNN). RNNs are
built for processing a sequence of vectors (x1, ...,xi, ...,xM). In every step i,
each layer of the RNN obtains the output of the previous layer as input. The
hidden layers additionally obtain a hidden vector h that encodes information of

previous steps.

et al., 2014b), which consists of two RNNs for encoding and decoding, respectively. The
encoder-decoder architecture is depicted in Figure 2.3 and explained below.

Encoder

The task of the encoder is to extract useful features from the input sequence. In a first step,
feature vectors (x1, ...,xM) are extracted from the input sequence x1, ..., xM. In machine
translation, this is commonly achieved via using a learnable vector for every word xi. The
sequence (x1, ...,xM) is then fed into the encoder RNN to produce hidden vectors h(l)M,enc for

all l = 1, ..., L− 1, where h(l)0 is initialized as a vector of zeros.

Decoder

The task of the decoder is to produce a sequence ŷ1, ..., ŷN that matches the output y1, ..., yN.
In order to pass the information extracted from the encoder to the decoder, we initialize the
hidden vectors h(l)0,dec of the decoder as h(l)0,dec = h

(l)
M,enc for all l = 1, ..., L− 1.

In every decoding step j = 1, ..., N, the input is a feature vector ŷ j−1 of the previous
prediction ŷj−1, where ŷ0 is initialized as a vector of zeros or a dedicated vector indicating the
start of the decoding process for instance. The decoder then produces an output vector ŷout

j ,
where the activation function of the last layer of the decoder is given by ϕL,dec = ϕsoftmax.
Afterwards, we sample an outcome ŷj from the distribution ŷout

j and the process repeats
with decoding step j + 1.
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Encoder Decoder

FIGURE 2.3: Encoder-Decoder RNN architecture. The architecture is composed
of two RNNs for the tasks of encoding and decoding. The encoder obtains
a sequence of vectors (x1, ...,xi, ...,xM) as input and produces hidden vectors
h
(l)
M,enc for all l = 1, ..., L− 1. In order to pass the information from the encoder

to the decoder, the hidden vectors h(l)
0,dec of the decoder are initialized as h(l)

0,dec =

h
(l)
M,enc for all l = 1, ..., L− 1. The decoder then produces a sequence of outputs

ŷ1, ..., ŷN . In every decoding step j, the feature vector ŷj−1 of the previous
prediction ŷj−1 becomes the input to the decoder.

Attention

The hidden vectors h(l)M,enc create a bottleneck in the encoder-decoder architecture as they
carry the burden of containing the information of the entire input sequence for producing
the entire output sequence. This is especially problematic for long input sequences since
we only have L− 1 hidden vectors of fixed dimensionality to store the entire input. This is
exacerbated due to the fact that different output predictions might require the input features
to different extents. For instance, producing the translation of the word dog in the output
will require knowledge of the presence of the word dog in the input, whereas this knowledge
might not be relevant for the prediction of another word. In order to circumvent the issue,
the attention mechanism has been proposed (Bahdanau et al., 2015; Luong et al., 2015), which
provides a context vector cj that encapsulates the encoded features in every decoding step j
to different extents.

In every decoding step j, the attention mechanism is applied before producing the output
vector ŷout

j as follows (see also Figure 2.4). For a context vector cj ∈ RdL−1 , where dL−1 is the

dimension of the hidden vectors h(L−1)
i,enc , we calculate the output ŷout

j as

ŷout
j = ϕL(WLh̃

(L−1)
j,dec + bL), (2.10)
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Encoder Decoder

Context

FIGURE 2.4: Encoder-Decoder RNN architecture with attention. The attention
mechanism is applied before calculating the output ŷ j and provides the decoder
with additional information about the input features in every decoding step j.
To this end, a context vector cj is calculated as a weighted sum of the last hidden

vectors of the encoder.

h̃
(L−1)
j,dec = ϕc(Wc · cj ⊕ h(L−1)

j,dec ), (2.11)

whereWc ∈ RdL−1×2dL−1 is a learnable weight matrix. In contrast to before, we thus have
an additional layer that incorporates information from a context vector cj. The context vector
is supposed to provide information of the input sequence that is beneficial for the prediction
of ŷj. We calculate the context vector cj as a weighted sum of input feature vectors

cj = ∑
i

wji · h(L−1)
i,enc ∈ RdL−1 , where ∑

i
wji = 1. (2.12)

The weights wji are called attention weights since they determine how much attention

should be put on each hidden vector h(L−1)
i,enc . While there are multiple ways to calculate the

attention weights (Luong et al., 2015), the simplest way is given by a dot-product followed
by a softmax for normalization

wji = ϕsoftmax([h
(L−1)
j,dec (h

(L−1)
i,enc )T]Mi=1])i. (2.13)

The corresponding attention mechanism is referred to as dot-product attention. The
decision of how to calculate the attention weights and where the context vector should be
added exactly is a design decision that can differ between methods (Bahdanau et al., 2015;
Luong et al., 2015). The overarching novelty comes from the idea to incorporate in every
decoding step j a weighted sum of encoded feature vectors of the input sequence (x1, ...,xM).
The attention mechanism relieves the final hidden vectors h(l)M,enc from the requirement of
memorizing the entire input sequence and provides the decoder more access to the input
sequence. As an example, imagine reading a book and being asked questions afterwards. If
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we internally use RNNs without attention, we are required to memorize the entire content of
the book. If we additionally use attention, we still have access to the book and only need to
know at which parts of the book we need to look at depending on the question being asked.
The attention mechanism will be heavily exploited in the Transformer architecture that we
explain next.

2.4 Transformer Networks

For an input sequence of length M, the number of sequential operations in a RNN is O(M),
which leads to high time-complexity for long sequences. The problem arises from the
inherently sequential nature of RNNs that precludes parallelization across steps i. Moreover,
the RNN has only a limited ability to model long-range dependencies of the inputs xi due to
potential information loss over time. The seminal work by Vaswani et al. (2017) proposed the
Transformer network in order to overcome these issues by relying entirely on the attention
mechanism that we have already seen in Section 2.3.1. In contrast to the attention mechanism
for an Encoder-Decoder RNN, where an output vector puts attention on a sequence of input
vectors, the Transformer introduces self-attention. The self-attention mechanism allows
an input sequence to put attention on itself, which opens up parallelization across steps i and
modeling of long-term dependencies as we will see in the following. The Transformer is
composed of multiple components, summarized in the following and explained in detail
below.

• Attention: the attention mechanism is the main ingredient in the Transformer and will
be used in self-attention as well as cross-attention for the encoder-decoder Transformer.
It allows parallelization across steps and the modeling of long-term dependencies.

• Multi-Head Attention: this will calculate multiple attentions in parallel using different
linear transformations. It allows the model to extract different features of the input
before applying attention.

• Feed-forward Networks: a feed-forward network is used to equip the Transformer
with more powerful non-linear feature extraction capabilities.

• Positional Encoding: this will provide the Transformer information about the position
of each input in the input sequence.

2.4.1 Self-Attention

Our motivation is the following. Given a sequence (x1, ...,xM) of input vectors of dimension
d, we want to produce a sequence of hidden feature vectors (h1, ...,hM) (as for RNNs). While
RNNs achieve this by sequential calculations, we strive for the following:

• the calculation of hi should have access to all inputs xj

• the calculation of all hi should be done in parallel

We have already seen in the attention mechanism of Section 2.3.1 how an output vector
can have access to a sequence of input vectors. We can apply the same idea to provide
information of the inputs xj to the calculation of hi as follows:
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hi = ∑
j

wij · xj ∈ Rd, where ∑
j

wij = 1. (2.14)

As before, the weights wij are called attention weights and determine how much each
input xj should contribute to the calculation of hi. To compute the attention weights, we
again use a dot-product followed by a softmax for normalization

wij = ϕsoftmax([xi(xj)
T]Mj=1)j. (2.15)

The higher a weight wij, the more attention xi puts on xj, and the more influence xj has
in the sum hi. We can think of the calculation of hi as follows: position i is sending a query
to all other positions j in form of its query vector qi = xi. Each position j has a key kj and a
value vj and wants to send back its value based on how similar the query is to the key. In
our case, the key and the value are both given by xj, i.e. kj = vj = xj. With the terminology
of queries, keys and values, we can rewrite the calculation of hi as

hi = ∑
j

ϕsoftmax(qiK
T)j · vj, (2.16)

where K = [xj]
M
j=1 is the matrix with rows xj. Moreover, this method allows us to

calculate all hi in parallel using efficient matrix-multiplication

[h1, ...,hM] = ϕsoftmax(QK
T) · V , (2.17)

where Q = [xi]
M
i=1 is the matrix with rows qi = xi, V = [xj]

M
j=1 is the matrix with rows

vj = xi and ϕsoftmax is applied row-wise. As we use the input sequence (x1, ...,xM) for
queries, keys and values, the attention mechanism is called self-attention.

In conclusion, self-attention provides us parallelization across positions i and thus only
requires O(1) sequential operations. Moreover, it gives every position i access to all other
positions j, which enables the modeling of long-term dependencies. Self-attention thus
mitigates the limitations of RNNs.

2.4.2 Scaled Dot-Product Attention

In the previous section, we calculated a sequence of hidden vectors as

[h1, ...,hM] = ϕsoftmax(QK
T) · V , Q =K = V = [xi]

M
i=1, (2.18)

which we called self-attention. If we use arbitrary matricesQ ∈ RM×dq ,K ∈ RN×dq ,V ∈
RN×dv in Equation 2.18, we obtain the general attention calculation (which also covers the
attention in Section 2.3.1).

The dot-product can grow large in magnitude for large dimensions dq due to the fol-
lowing reason. If we assume that the elements of the query and key vector q,k ∈ Rdq are
independent random variables with mean 0 and variance 1, then the dot-product

qkT =
d

∑
i=1
qiki (2.19)
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Scaled Dot-Product Attention

Concatenate

h

FIGURE 2.5: Left: Scaled Dot-Product Attention. Given a query matrix Q and
key matrix K, we use the dot-product to calculate the similarity between the
rows ofQ andK. Subsequently, the elements of the resulting matrix are scaled
and a softmax function is applied row-wise for normalization. The resulting
attention weights are then used to weight the entries of the value matrix V .
Right: Multi-head Attention. The scaled dot-product attention is executed h
times, each time with different linear projections ofQ,K and V . The h outputs
of different heads are then concatenated and projected once again using a weight

matrixWO.

has mean 0 and variance dq. In order to reduce the variance, the authors propose to use a
scaled dot-product attention

Attention(Q,K,V ) = ϕsoftmax(
QKT
√︁

dq
) · V , (2.20)

for matricesQ ∈ RM×dq ,K ∈ RN×dq ,V ∈ RN×dv . The scaled dot-product attention calcula-
tion is depicted on the left side of Figure 2.5 and will be used for self-attention on the input
sequence and cross-attention from the Transformer decoder to the encoder.

2.4.3 Multi-Head Attention

Instead of performing a single attention, Vaswani et al. (2017) proposed to perform the
attention calculation h times, where the query, key and value vectors are first transformed
using different, learned weight matricesW Q

s ∈ Rdq1×dq ,W K
s ∈ Rdk×dq ,WV

s ∈ Rdv1×dv . This
allows the model to extract different features for queries, keys and values of the input
before applying attention and enlarges its modeling capabilities. The different attention
outputs are subsequently concatenated and further multiplied by yet another weight matrix
WO ∈ Rh·dv×do . The full process is called multi-head attention and given as follows:

MHA(Q,K,V ) = [h
(1)
i ⊕ ...⊕ h(h)i ]Mi=1 ·WO ∈ RM×do , (2.21)

Hs = [h
(s)
i ]Mi=1 = Attention(QW Q

s ,KW K
s ,VWV

s ) ∈ RM×dv (2.22)
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The multi-head attention calculation is depicted on the right side of Figure 2.5.

2.4.4 Position-wise Feed-forward Networks

The output of the multi-head attention MHA(Q,K,V ) is a matrix, where each row is a
linear transformation of the value vectors vj in the value matrix V = [vj]

M
j=1. In order to

approximate non-linear functions, we need to introduce non-linearity. While this could be
done by applying a non-linear activation function ϕ on the output of the multi-head attention
module, the Transformer leverages a feed-forward neural network for a more powerful
feature extraction. More specifically, the Transformer utilizes a two layer feed-forward
network with ReLU activation function in between:

FFN(x) = max(0,W1x+ b1)W2 + b2, (2.23)

where the same feed-forward network is applied for every position, i.e. row.

2.4.5 Transformer Blocks

We have now introduced all ingredients for defining a Transformer block. The Trans-
former block comes in two flavors, with self-attention and the additional possibility of
cross-attention.

Transformer Block with Self-Attention

A Transformer block with self-attention obtains a matrixX = [x1, ...,xM] ∈ RM×d as input
and produces an output matrix H = [h1, ...,hM] ∈ RM×d as depicted on the left side of
Figure 2.6 and explained below.

The input matrixX is first fed into the multi-head attention module, whereQ = K =
V = X , i.e. we use self-attention. Before we apply the feed-forward network for intro-
ducing non-linearity, we utilize a residual connection (He et al., 2016) followed by layer
normalization (Ba et al., 2016).

Residual connection: For a function f : Rn −→ Rn and vector x ∈ Rn, a residual
connection is given by x+ f (x), i.e. we add x and f (x). Residual connections allow the
input x to bypass the function f and has been introduced in order to train deep neural
networks with many layers. Note that the residual connection requires the function f to
have the same input and output dimension n.

Layer normalization: For a vector x = [x1, ..., xn], layer normalization is defined as

Norm(x) = γ ⊙ (x− µ)

σ
+ β, µ =

1
n

n

∑
i=1

xi, σ =

√︄
1
n

n

∑
i=1

(xi − µ)2, (2.24)

where γ,β ∈ Rn are learnable weights and⊙ denotes element-wise multiplication. Layer
normalization normalizes different inputs to a similar distribution, which aids in learning of
the neural network.

After applying multi-head attention, residual connection and layer normalization, we
obtain a matrix

H ′ = Norm(X + MHA(X ,X ,X)) ∈ RM×d. (2.25)
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FIGURE 2.6: Left: Transformer block with self-attention obtains a sequence of
vectors as input (stacked in a matrix X) and produces a sequence of hidden
vectors stacked in a matrixH . The Transformer block starts with a multi-head at-
tention where queries, keys and values are given by the matrixX . Subsequently,
a residual connection (Add) and layer normalization (Norm) is applied. The
output is fed into a feed-forward neural network for non-linear function approx-
imation. Right: the Transformer block with self-attention and cross-attention
follows a similar procedure as with only self-attention. Nevertheless, a second
sequence of vectors stacked in a matrix Z is given as input. Z is incorporated in
the second multi-head attention module, where Z serves for both the key and

value.

Each row vector of H ′ is then fed into the feed-forward network FFN as explained in
Section 2.4.4 and another residual connection followed by layer normalization is applied
subsequently, leading to the final output

H = Norm(H ′ + FFN(H ′)) ∈ RM×d, (2.26)

where the weights in the FFN have dimensionsW1 ∈ Rd1×d,W2 ∈ Rd×d1 , b1 ∈ Rd1 , b2 ∈
Rd. The dimension d1 is typically chosen to be larger than d in order to memorize information.
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Transformer Block with Self-Attention and Cross-Attention

A Transformer block with self-attention and cross-attention obtains a matrixY = [y1, ...,yN] ∈
RN×d andZ = [z1, ..., zM] ∈ RM×d as input and produces an output matrixH = [h1, ...,hN] ∈
RN×d as depicted on the right side of Figure 2.6 and explained below.

The matrix Y is first fed into the multi-head attention module, whereQ =K = V = Y ,
i.e. we apply self-attention. Afterwards, a residual connection is applied followed by layer
normalization, which leads to a matrix

H̃ = Norm(Y + MHA(Y ,Y ,Y )) ∈ RN×d. (2.27)

In contrast to the Transformer block with only self-attention, we additionally incorporate
the matrix Z into the calculation by applying another multi-head attention, where Q =
H̃ ,K = V = Z, which is called cross-attention. This results in a matrix

H ′ = Norm(H̃ + MHA(H̃ ,Z,Z)) ∈ RN×d. (2.28)

We note that the row vectors of Z and H̃ need to have the same dimension since we
use a scaled dot-product between them. Analogous to the Transformer block with only
self-attention, we then feedH ′ into a feed-forward network FFN as explained in Section 2.4.4
and another residual connection followed by layer normalization is applied subsequently,
leading to the final output matrix

H = Norm(H ′ + FFN(H ′)) ∈ RN×d. (2.29)

In summary, the Transformer block can process a sequence of vectors in parallel due to
the (self-)attention mechanism and efficient matrix-matrix multiplication. Moreover, (self-)
attention simplifies the learning of long-term dependencies between input vectors compared
to RNNs. The Transformer block leverages a feed-forward neural network for producing
non-linear functions and utilizes layer normalization and residual connections for better
learning stability.

Transformer blocks can be stacked together analogously to the layers of a feed-forward
neural network, where each block has its dedicated weights for the multi-head attention, feed-
forward network and layer normalization. The output of one Transformer block becomes
the input to the subsequent Transformer block as depicted in Figure 2.7. We remark that the
input and output dimension of a Transformer block coincide due to the residual connections.

2.4.6 Positional Encoding

The Transformer block treats every input xi in the same way, regardless of the position i.
Nevertheless, positional information can be important, for instance when treating a sequence
of words in a sentence. If we incorporate the position i ∈N directly, this becomes unbounded
and large for long sequences. Alternatively, we can normalize the positions by dividing by
the sequence length N. Nevertheless, the positional encoding will then dependent on the
specific sequence length.

Instead, the authors propose a positional vector as follows. Let d be the dimension of
input vector x. For a position i ∈N, the positional encoding p(i) ∈ Rd is defined as

p(i) = [sin(w0i), cos(w0i), ..., sin(wki), cos(wki), ..., sin(wd/2−1i), cos(wd/2−1i)], (2.30)
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wk =
1

100002k/d (2.31)

The positional encoding has the following properties. Firstly, the elements of p(i) are
bounded between −1 and 1 due to the boundedness of sin and cos. Secondly, the elements
of the positional encoding are sin and cos functions of increasing periods

2π, 2π · 100002/d, 2π · 100004/d, ..., 2π · 100001−2/d, (2.32)

which means that the positional encodings are unique as long as the length of the sequence
is smaller than 2π · 100001−2/d ≈ 2π · 10000.

Furthermore, the positional encodings have the same length and the distance is symmetric
for n ∈N (see Appendix Theorem 2), i.e.

||p(i)||2 =

√︃
d
2

, ||p(i) − p(i+n)||2 = ||p(i) − p(i−n)||2, ∀n ∈N. (2.33)

Lastly, for any offset n ∈N, p(i+n) can be represented as a linear function of p(i)

p(i+n) =M (n)p(i), (2.34)

where M (n) depends on n but not on i, see Appendix Theorem 3. According to Vaswani
et al. (2017), this linear relationship allows the model to easily learn to attend by relative
positions. The positional encoding is added to the inputX of the Transformer block, i.e. the
new input becomes

[xi + p
(i)]Mi=1. (2.35)

If we use a stack of Transformer blocks, the positional encoding is only added to the
input of the first Transformer block but not subsequent blocks. This is because the residual
connections already add the positional encoding to subsequent blocks.

2.4.7 Transformer Encoder-Decoder

The Transformer architecture was originally proposed for the task of machine translation.
Analogously to the encoder-decoder RNN that we already saw, an encoder-decoder Trans-
former is composed of two Transformer architectures.

Encoder

Given an input vector sequence X = [x1, ...,xM] ∈ RM×d viewed as a matrix X , the
Transformer encoder adds positional encoding as explained in Section 2.4.6. The resulting
matrix [xi + p

(i)]Mi=1 is fed into a stack of Transformer blocks with self-attention, which
produces a matrix Z = [z1, ..., zM] ∈ RM×d as depicted on the left side of Figure 2.7. We
emphasize again that in contrast to the RNN, the self-attention mechanism allows us to
calculate all vectors z1, ...,zM in parallel.
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FIGURE 2.7: The Transformer Encoder-Decoder architecture. Left: the encoder
is composed of a stack of LEnc Transformer blocks. The input to the first Trans-
former block is summed with positional encodings that provide positional infor-
mation. The output Z of the encoder will be leveraged by the decoder through
attention. Right: the decoder generates the outputs ŷj auto-regressively, one
element at a time, as in the RNN decoder. In every step, the input to the decoder
is a sequence of features vectors of the previous decoder predictions, stacked in

a matrix Y .

Decoder

The goal of the decoder is to leverage the encoded feature vectors in Z in order to produce
the output sequence y1, ..., yN, one element at a time. In every decoding step j = 1, ..., N, the
input to the Transformer decoder is a matrix Ŷ = [ŷ0, ..., ŷ j−1] ∈ Rj×d that consists of feature
vectors for the previous predictions ŷ0, ..., ŷj−1, where ŷ0 is initialized as a vector of zeros or a
dedicated vector indicating the start of the decoding process for instance. As for the encoder,
positional encoding is leveraged to produce a matrix [ŷi +p

(i)]
j−1
i=1. This matrix, together with

Z, becomes the input to a stack of Transformer blocks with self-attention and cross-attention
as depicted on the right side of Figure 2.7. This results in a matrix Ĥ = [ĥ0, ..., ĥj−1]. The
final output ŷout

j is then obtained by feeding ĥj−1 into a linear layer followed by a softmax
activation function ϕsoftmax as depicted in Figure 2.7. We can then sample an output ŷj and
the decoding process continues.
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2.5 Neural Network Optimization

After discussing several neural network architectures with neural network parameters θ,
we require a method for optimization. At the heart of the optimization lies a so-called loss
function

L : Rd −→ R, θ ↦→ L(θ), (2.36)

which maps neural network parameters to a real-valued number. The goal is to find a
global minimum θmin of L. The minimization of L is supposed to be equivalent to finding
the neural network weights that solve our task at hand. Consequently, the appropriate
definition of L is crucial. The two most commonly used loss functions are cross-entropy and
mean-squared error, which are used for the task of classification and regression, respectively.
Given a dataset D = {(xin

i , yout
i )}N

i=1, we have:
Classification: let the task be given by classification, i.e. every input xin

i has to be classified
into one of Ncat categories y1, ..., yNcat . Let f (x;θ) = (p(y1 | x; θ), ..., p(yNcat | x; θ)) be the
neural network output probabilities as for instance obtained by ϕsoftmax. The goal is to find
θ∗ that maximizes the likelihood of the data, i.e.

θ∗ = arg max
θ

N

∏
i=1

p(yout
i | xin

i ;θ) (2.37)

= arg min
θ

−
N

∑
i=1

log p(yout
i | xin

i ;θ). (2.38)

The loss L(D;θ) = −∑N
i=1 log p(yout

i | xin
i ;θ) is referred to as cross-entropy loss.

Regression: let the task be given by regression, i.e. yout
i ∈ R. We can minimize the error

between the neural network output f (xin
i ;θ) and yout

i using the mean-squared error loss

L(D;θ) =
N

∑
i=1

( f (xin
i ;θ)− yout

i )2. (2.39)

2.5.1 Gradient Descent

For a given function f : Rd −→ R, we want to find a solution x∗ such that f (x∗) is minimal.
Taylor’s theorem (Marsden, 2012) shows that we can approximate f around a point x ∈ Rd

with the first-order Taylor series

f (x+ ∆x) ≈ f (x) + ∆xT∇ f |x, (2.40)

where ∆x ∈ Rd is small enough. Our aim is to find ∆x, such that f (x+ ∆x) ≤ f (x).
This can be achieved by choosing ∆x = −η∇ f |x, for a small η ∈ R, since (∇ f |x)T∇ f |x ≥ 0.
We thus obtain an algorithm that starts with an arbitrary x0 and updates according to

x1 = x0 − η∇ f |x0 . (2.41)

The resulting algorithm is called optimization by gradient descent. On the one hand,
we want a small η so that the first-order Taylor series provides a good approximation. On
the other hand, a small η will result in slow convergence. Moreover, we can observe that
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using the gradient can potentially result in a local instead of global optimum of f . Gradient
descent is guaranteed to converge to a local minima for an appropriate update schedule for
η (Bertsekas and Tsitsiklis, 1999).

Gradient descent is the core algorithm for training neural networks with parameters θ.
Given neural network parameters θt, we obtain new parameters θt+1 given by

θt+1 = θt − ηgt, (2.42)

where gt = ∇L|θt , L denotes a loss function (e.g. cross-entropy or mean-squared error) and
η is referred to as the learning rate. In the following, we provide some advanced optimization
versions of gradient descent that accelerate learning in practice.

2.5.2 Momentum

Gradient descent has issues navigating areas where the surface curves are much steeper in
one direction than another. The gradient then oscillates in one direction while only making
small steps in the other direction (Ruder, 2016). Momentum (Qian, 1999) mitigates this issue
by accelerating the gradient in consistent directions while slowing down the gradient in
directions where oscillations occur. For a hyperparameter β, the update is given by

mt = βmt−1 + gt (2.43)
θt+1 = θt − ηmt (2.44)

We can see that if the entries of gt andmt−1 have the same sign (e.g. for small gradients in
the same direction), the update is increased, whereas it is decreased for the case of different
signs (e.g. for oscillations).

2.5.3 Adagrad

The updates using the gradient highly depend on the magnitude of the gradient entries. If an
entry of the gradient has very high values, we need to reduce the learning rate η in order to
not diverge. In contrast, if an entry of the gradient has very small values, we require higher
learning rates for faster convergence. The Adagrad optimizer (Duchi et al., 2011) solves this
issue by introducing an adaptive learning rate for every entry of the parameter vector θt. For
a hyperparameter β the update is given by

vt = βvt−1 + (1− β)gt ⊙ gt, (2.45)

θt+1 = θt − η
gt√
vt + ϵ

, (2.46)

where ϵ > 0 is a small constant and the vector division is element-wise.

2.5.4 Adam

Adaptive Moment Estimation (Adam) (Kingma and Ba, 2015) combines the strengths of
momentum and adaptive learning rates as in Adagrad. Adam starts off by calculating an
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exponential average of the gradients as well as squared gradients as in momentum and
Adagrad

m0 = 0, (2.47)
mt = β1mt−1 + (1− β1)gt, (2.48)
v0 = 0, (2.49)
vt = β2vt−1 + (1− β2)gt ⊙ gt. (2.50)

Typically the values of β1, β2 are chosen to be close to 1 since this gives smoother estimates
that are not highly governed by the current noisy gradient gt. Nevertheless, the estimates of
mt and vt are biased towards the initial values for small t and values of β1, β2 close to 1. For
instance, if β1 = 0.9, we have

m1 = 0.9m0 + 0.1g1 = 0.1g1, m2 = 0.9 · 0.1g1 + 0.1g2, (2.51)

and more generally

mt = βt
1m0 + (1− β1)

t−1

∑
i=0

βi
1gt−i = (1− β1)

t−1

∑
i=0

βi
1gt−i. (2.52)

If we want to reduce the influence of m0 = v0 = 0 for small t and β1, β2 close to 1, we
can introduce a bias correction term as follows

mtˆ =
mt

1− βt
1

, (2.53)

vtˆ =
vt

1− βt
2

, (2.54)

which counteracts the decreasing factor of 1− β1 and 1− β2 for small values of t. Another
way to derive the bias correction terms 1− βt

1 and 1− βt
2 is the following. Imagine we have

a noisy loss function L(θ) and we are interested in minimizing E[L(θ)]. The stochasticity
in L can arise for instance if we do not use all data points (xin, yout) in our dataset D, but
sample a subset Dsub ⊊ D in every optimization step (see Section 2.6). Let us denote by Lt a
realization of L at optimization step t and let gt = ∇θLt. We estimate the expected gradient
E[gt] using an exponential weighted average

m0 = 0, (2.55)
mt = β1mt−1 + (1− β1)gt. (2.56)

In order to estimate the difference between our expected weighted average and the true
expectation, we can calculate
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E[mt] = E[(1− β1)
t−1

∑
i=0

βi
1gt−i] (2.57)

= (1− β1)
t−1

∑
i=0

βi
1E[gt−i]. (2.58)

If the expectation E[gi] is stationary, we obtain the bias correction term 1− βt
1 since

E[mt] = (1− β1)
t−1

∑
i=0

βi
1E[gt] = (1− βt

1)E[gt]. (2.59)

An analogous derivation holds for vt. In conclusion, the update of neural network
parameters θt according to Adam is given by

θt+1 = θt − η
mtˆ√
vtˆ + ϵ

, (2.60)

where ϵ > 0 is a small constant and the vector division is element-wise.

Algorithm 1 Neural Network Training Procedure

Require: dataset D, neural network f (·;θ), optimizer Ω, loss function L(D;θ), number of
mini-batches Nb, number of epochs K

1: Initialize neural network weights θ randomly
2: for epoch= 1, ..., K do
3: Shuffle D
4: Split D into Nb mini-batches Dbatch,1, ..., Dbatch,Nb
5: for n = 1, ..., Nb do
6: Calculate g = ∇θL(Dbatch,n;θ)
7: Update θ using optimizer Ω und gradient g
8: end for
9: end for

2.6 Neural Network Training Procedure

In this section, we give a brief overview of how neural networks are being trained. Given a
dataset D = {(xin

i , yout
i )}N

i=1, we perform the following decisions before starting the training.
We first decide on a neural network architecture to use that is appropriate for the given data,
e.g. a feed-forward network or Transformer. Secondly, the neural network weights θ ∈ Rd

are initialized. This is typically done based on a normal distribution or uniform distribution
(Glorot and Bengio, 2010; He et al., 2015). Afterwards, we select an optimizer with learning
rate η for updating the neural network weights, e.g. Adagrad or Adam. Lastly, we select
a loss function L(D;θ) that we want to minimize, e.g. cross-entropy loss or mean-squared
error loss.

Since our goal is to minimize the loss L(D;θ), it seems natural to leverage the entire data
D at once for optimization, i.e. update the weights θ using the gradient g = ∇θL(D;θ).
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Nevertheless, D can be large, which makes it very slow to calculate the gradients or even
impossible due to memory constraints. In practice, we instead use a subset Dbatch ⊊ D,
also referred to as mini-batch, and update the neural network weights using the gradient
g = ∇θL(Dbatch;θ). This approach offers the benefit of greater computational efficiency
while still providing a good approximation of the complete dataset. In addition, it results in
faster convergence, since instead of using the entire dataset for one update, we can split it into
Nb mini-batches and perform Nb consecutive updates. Furthermore, employing mini-batches
can enhance convergence towards an improved solution compared to utilizing the entire
dataset, as the diverse mini-batches assist in escaping local minima.

The neural network training is performed in a number of K epochs. In every epoch, the
dataset D is first shuffled and split into Nb mini-batches. Afterwards, we traverse the list
of mini-batches. For every mini-batch Dbatch, we calculate the gradient ∇θL(Dbatch;θ) and
update the neural network weights using our chosen optimizer. The epoch ends once every
mini-batch has been used, i.e. after all the data in D has been leveraged. A summary of the
training procedure is provided in Algorithm 1.

In the following chapter, we discuss reinforcement learning where there is no dataset
to begin with, but data is produced through interaction with an environment. In this case,
the neural network is updated after a certain amount of interactions. The data for updating
either comes from the interaction data that was collected since the last neural network update
or from a so-called replay buffer that acts as a dataset of previous interactions.

2.7 Conclusion

This chapter introduced the fundamental concepts of deep learning. We started by defining
neural network architectures such as feed-forward neural networks, RNNs and Transformers
for function approximation. While feed-forward networks process a single input vector,
RNNs and Transformers can process a sequence of inputs and produce a sequence of outputs.
The Transformer introduced the notion of self-attention to overcome limitations in the RNN
such as parallelization and modeling of long-term dependencies among inputs. Afterwards,
we discussed the optimization of neural networks based on gradient descent and more
advanced methods such as Adam and concluded with a section about the neural network
training procedure.
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Chapter 3

Reinforcement Learning

In reinforcement learning (RL), an agent interacts with an environment in discrete time steps
(Sutton et al., 1999). In every step, the agent is located in a specific state, takes an action
and observes a reward signal. Both state information and reward signal are emitted by
the environment. A visualized representation can be observed in Figure 3.1. The action
selection of the agent is driven by a policy, which defines a mapping from states to probability
distributions over actions. The goal of the agent is to select actions in order to maximize
the total sum of reward. The reward signal in every turn can be interpreted as reinforcing
or penalizing the taken action. Yet, reinforcement learning is a sequential-decision making
task and sacrificing immediate reward can move the agent into states that provide higher
reward in the long run. The reward is hence not a signal that tells how to act optimally
in every turn but the whole sequence of states, actions, and rewards has to be taken into
account to evaluate the decisions. The reward signal encodes what should be achieved but
not necessarily how. This puts apart reinforcement learning from supervised learning that
informs the system in every state with the labeled action that should be taken. Instead,
a reinforcement learning agent obtains information about how to act best in every state
by interacting with the environment in a trial-and-error process. Moreover, compared to
supervised learning that expects a data set to begin with, the RL agent produces the data
itself by interacting with the environment.

3.1 Markov Decision Process

To tackle the reinforcement learning task in a precise way, let us state it more formally in
the following. The reinforcement learning problem is defined by a Markov decision process
(MDP)M =< S ,A, r, p, p0, γ > (Puterman, 1994), where

• S denotes the state space, i.e. the set of all states that the agent can visit.

• A denotes the action space defining all possible actions the agent can take.

• r : S×A −→ R denotes the reward function, which maps a tuple (s, a) of state and
action to a real value r(s, a).

• p(s′|s, a) is the transition probability function and models the probability of transition-
ing to state s′ after executing action a in state s.

• p0(s) is the starting state probability and gives the probability of starting in state s.

• γ denotes the discount factor.
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Agent

Environment

actionstate

reward and next state

FIGURE 3.1: Interaction of the RL agent with its environment. In every step, the
environment emits a state St upon which the agent takes an action At. The agent
then receives a reward Rt and the next state St+1. Figure taken from (Sutton and

Barto, 2018).

The Markov property comes into play here as only the last state and action is necessary to
determine the transition to the next state. The aim of the discount factor γ ∈ [0, 1] is to trade-
off the importance of immediate and future rewards. The MDP describes the environment
the agent lives in. Lastly, a policy π(a|s) defines a probability distribution over actions, given
states, i.e. a mapping

π : S ×A −→ [0, 1], (s, a) ↦→ π(a|s). (3.1)

The policy π fully determines the behavior of the agent. To summarize the process, at
a given time step t, the agent observes a state st, chooses an action at ∼ π(·|st), observes a
reward signal rt = r(st, at) ∈ R and transitions to a new state st+1. We emphasize that in this
chapter, the letters s and a always refer to an element of the state space S and action space A,
respectively.

3.2 Return and Value Functions

In the last section we have defined the environment that the agent interacts with, which is
given by the MDP. We now define what the goal of the agent is and introduce the notion of
value functions that are fundamental in reinforcement learning. Informally, the goal of the
agent is to maximize the discounted sum of rewards in expectation. To define it formally, we
need the notion of discounted return.

Definition 1. For a time step t and a (possibly infinite sequence) St, At, Rt, St+1, At+1, Rt+1, ... of
states, actions and rewards, we define the discounted return as

Gt = ∑
i≥0

γiRt+i. (3.2)

In episodic environments, there is a distinct terminal state that the agent arrives in after
finitely many steps. This is the case in games and dialogue for instance. The discounted
return will then become a finite sum ∑T−1

i=0 γiRt+i that ends with the terminal state ST and is
well-defined even in the case γ = 1. In contrast, continual or non-episodic environments
have no terminal state and Gt is actually an infinite sum. A discount factor of γ < 1 then
ensures that the sum is still well-defined (given the reward Rt is bounded).

The agent uses its policy π for taking an action in every state, which produces a trajectory
of states, actions, and rewards
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τ = s0, a0, r0, , s1, a1, r1, ..., sT. (3.3)

with probability distributions

pπ(τ) = p0(s0)
T−1

∏
t=0

π(at|st)p(st+1|st, at), (3.4)

pπ(τ|s0) =
T−1

∏
t=0

π(at|st)p(st+1|st, at) (3.5)

Definition 2. The state-value function Vπ(s) for a policy π in state s is defined as the expected
return when being in state s and following policy π, i.e.

Vπ(s) = Eπ[Gt|St = s]. (3.6)

The action-value function Qπ(s, a) for a policy π in state s with action a is defined as the expected
return when executing action a in state s and following policy π afterwards, i.e.

Qπ(s, a) = Eπ[Gt|St = s, At = a]. (3.7)

The advantage function Aπ(s, a) for a state s and action a is defined as

Aπ(s, a) = Qπ(s, a)−Vπ(s). (3.8)

We use the notation Eπ to indicate that the actions are sampled from π. The action-value
function is also known as Q-function and we will use these two terms interchangeably. The
state-value function and Q-function give a measure of how good it is to be in state s (and
using action a) when following the policy π. The advantage function expresses how much
advantage in terms of expected return we obtain when taking action a in state s compared to
being in state s. The state-value function, Q-function and advantage function are related via

Vπ(s) = Eπ[Qπ(s, A)], (3.9)
Qπ(s, a) = Eπ[Rt + γVπ(St+1)|St = s, At = a], (3.10)
Aπ(s, a) = Eπ[Rt + γVπ(St+1)−Vπ(St)|St = s, At = a]. (3.11)

Equation 3.11 implies that we can obtain an estimate of the advantage function through
rt + γVπ(st+1)− Vπ(st), i.e. only using the state-value function. Moreover, the expected
advantage is

Eπ[Aπ(s, A)] = ∑
a

π(a|s) · A(s, a) = ∑
a

π(a|s) · (Qπ(s, a)−Vπ(s)) = Vπ(s)−Vπ(s) = 0.

(3.12)
The state-value and Q-function are used in order to define what it means to be optimal.

Definition 3. A policy π1 is considered better than another policy π2 if

Vπ1(s) ≥ Vπ2(s), ∀s ∈ S . (3.13)



32 Chapter 3. Reinforcement Learning

The optimal state-value and action-value function are defined by

V∗(s) = max
π

Vπ(s), Q∗(s, a) = max
π

Qπ(s, a). (3.14)

A policy π is said to be optimal if Vπ(s) = V∗(s), ∀s ∈ S .

The state-value function hence gives us a measurement of how good a policy is. The
optimal state-value function defines the best possible performance in a MDP. While the
functions V∗ and Q∗ are unique, this does not need to hold for the optimal policy.

3.3 Policy Evaluation

As we have now defined the measurement for how a policy can be evaluated, we require
algorithms that can calculate the state-value function as well as the Q-function in practice.

3.3.1 Monte Carlo Estimation

We can obtain an estimate of Qπ or Vπ using the so-called Monte Carlo method, which is
given as follows. Let X be a random variable with distribution P. In order to obtain an
estimate of the expectation EX∼P[X], we can produce n independent samples x1, ..., xn of X
and take an average

X̄n =
x1 + ... + xn

n
. (3.15)

The estimate X̄n is referred to as Monte Carlo estimate and is guaranteed to converge
according to the law of large numbers (Rosenthal, 2006), i.e.

lim
n−→∞

X̄n = EX∼P[X]. (3.16)

Since the state-value and Q-function are also given by expectations, we can apply the
Monte Carlo method to produce estimates via an average that will eventually converge in
the limit. In the following we will concentrate on the state-value function but analogous
methods hold for the Q-function. To approximate Vπ(s) = Eπ[Gt|St = s], we require for
every state s an estimate V(s). In order to obtain samples for the expectation, we produce
trajectories using the policy π

τ = s0, a0, r0, , s1, a1, r1, ..., sT. (3.17)

We can then calculate returns gt = ∑i≥0 γirt+i and update our current average V(st) by

V(st)←− V(st) +
1

N(st) + 1
(gt −V(st)), (3.18)

where N(st) is the number of times the state st has been visited. It can be proven that the
average eventually converges to the expected value, even if a state s occurs multiply times in
the trajectory, which breaks the independence assumption (Bertsekas and Tsitsiklis, 1996).
The corresponding algorithm is called Monte Carlo policy evaluation.
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In practice, it is more common to track a running average using a learning rate 0 < α < 1
instead of the visitation count N(st):

V(st)←− V(st) + α(gt −V(st)). (3.19)

We hence update our average based on the difference between our current estimate and the
observed outcome gt.

3.3.2 General Strategy

The return gt that we used above for updating the average is more generally called the target
(in this case the Monte Carlo target). The general strategy for approximating the state-value
function or Q-function is to move the approximations closer towards a target vtarget

V(st)←− V(st) + α(vtarget −V(st)), (3.20)

and different algorithms for approximating Vπ can be distinguished by the target they
use. In addition to the Monte-Carlo target, other prominent examples for targets are the
TD-target and n-step return:

TD-target: vtarget = Gt:t+1 = Rt + γV(St+1) (3.21)

n-step Return: vtarget = Gt:t+n =
n−1

∑
i=0

γiRt+i + γnV(St+n) (3.22)

3.3.3 Off-Policy Evaluation

Instances of the above mentioned targets are obtained by generating trajectories using the
policy π that we seek to evaluate, since the expectation is with respect to π. If samples for
evaluating policy π are generated by π, this is referred to as on-policy evaluation. Yet, in
many domains such as medicine or dialogue it might be not possible to run an arbitrary
policy π due to the severity of the decisions or because producing trajectories is very costly.
Instead, we can only generate trajectories using another policy µ that is maybe more safe or
conservative. Our objective is then to evaluate the policy π, i.e. approximate Qπ or Vπ, by
using trajectories produced by µ, which is called off-policy evaluation. The policies π and µ
are then called target policy and behavior policy, respectively.

We can obtain off-policy targets for π using the idea of importance sampling. Let X be a
random variable and P1, P2 two probability distributions. We then have

EX∼P1 [X] = ∑
x

P1(X = x)X = ∑
x

P2(X = x)
P1(X = x)
P2(X = x)

X = EX∼P2

[︃
P1(X)

P2(X)
X
]︃

. (3.23)

The weight P1(X=x)
P2(X=x) is called importance sampling weight. In addition, for a trajectory

τ = st, at, rt, , st+1, at+1, rt+1, ..., st+n. (3.24)

we have
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pπ(τ|St = st)

pµ(τ|St = st)
=

n−1

∏
j=0

π(at+j|st+j)p(st+j+1|st+j, at+j)

µ(at+j|st+j)p(st+j+1|st+j, at+j)
(3.25)

=
n−1

∏
j=0

π(at+j|st+j)

µ(at+j|st+j)
. (3.26)

We can apply the above calculations for our targets in Section 3.3.2 to obtain off-policy
versions Gπ/µ

t , Gπ/µ
t:t+1 and Gπ/µ

t:t+n, where the superscript π/µ indicates that this is an off-policy
target:

vtarget = Gπ/µ
t = ∏

j≥0

π(At+j|St+j)

µ(At+j|St+j)
·∑

i≥0
γiRt+i (3.27)

vtarget = Gπ/µ
t:t+1 =

π(At|St)

µ(At|St)
· (Rt + γV(St+1)) (3.28)

vtarget = Gπ/µ
t:t+n =

n−1

∏
j=0

π(At+j|St+j)

µ(At+j|St+j)
· (

n−1

∑
i=0

γiRt+i + γnV(St+n)) (3.29)

Off-policy algorithms are typically more sample-efficient as they can train on experience
generated by arbitrary policies multiple times, while being often more unstable due to higher
variance. The higher variance arises due to accounting for the mismatch between target and
behavior policy through the importance sampling weights.

V-trace Target

V-trace (Espeholt et al., 2018) is an off-policy method for approximating the state-value
function Vπ of a target policy π based on data generated by a behavior policy µ. V-trace
addresses the issue of high variance arising from importance sampling through truncation.

Given a trajectory τ = st, at, rt, ..., st+n generated by a behavior policy µ, the n-steps
V-trace target vt is defined by

vt = V(st) +
t+n−1

∑
i=t

γt−i(
i−1

∏
j=t

cj)δi, (3.30)

where δi = ρi[ri + γV(si+1) − V(si)] is a temporal difference term. Moreover, ρi =

min(ρ, π(ai|si)
µ(ai|si)

) and cj = min(c,
π(aj|sj)

µ(aj|sj)
) are truncated importance sampling weights, where ρ

and c are hyperparameters satisfying ρ ≥ c.
In the on-policy case of π = µ and c ≥ 1, the V-trace target becomes the n-step return

since

vt = V(st) +
t+n−1

∑
i=t

γt−iδi =
t+n−1

∑
i=t

γt−iri + γnV(st+n). (3.31)

Before we mention the properties of the target, we build intuition about its derivation.
For a state st, the expected off-policy n-step return conditioned on st is given by



3.3. Policy Evaluation 35

Eµ[G
π/µ
t:t+n|St = st] (3.32)

= Eµ

[︄
n−1

∏
j=0

π(At+j|St+j)

µ(At+j|St+j)
· (

n−1

∑
i=0

γiRt+i + γnV(St+n))
⃓⃓
⃓St = st

]︄
(3.33)

= Eµ

[︄
n−1

∏
j=0

π(At+j|St+j)

µ(At+j|St+j)
· (

n−1

∑
i=0

γi(Rt+i + V(St+i)−V(St+i)) + γnV(St+n))
⃓⃓
⃓St = st

]︄
(3.34)

= Eµ

[︄
n−1

∏
j=0

π(At+j|St+j)

µ(At+j|St+j)
· (V(St) +

n−1

∑
i=0

γi(Rt+i + γV(St+i+1)−V(St+i)))
⃓⃓
⃓St = st

]︄
(3.35)

= V(st) +
n−1

∑
i=0

γi ·Eµ

[︄
n−1

∏
j=0

π(At+j|St+j)

µ(At+j|St+j)
· ((Rt+i + γV(St+i+1)−V(St+i)))

⃓⃓
⃓St = st

]︄
(3.36)

= V(st) +
n−1

∑
i=0

γi ·Eµ

[︄
i

∏
j=0

π(At+j|St+j)

µ(At+j|St+j)
· ((Rt+i + γV(St+i+1)−V(St+i)))

⃓⃓
⃓St = st

]︄
(3.37)

= V(st) + Eµ

[︄
n−1

∑
i=0

γi ·
i

∏
j=0

π(At+j|St+j)

µ(At+j|St+j)
· ((Rt+i + γV(St+i+1)−V(St+i)))

⃓⃓
⃓St = st

]︄
(3.38)

We can thus obtain a sample of Eµ[G
π/µ
t:t+n|St = st] as

V(st) +
n−1

∑
i=0

γi ·
i

∏
j=0

π(At+j|St+j)

µ(At+j|St+j)
· ((Rt+i + γV(St+i+1)−V(St+i))) (3.39)

= V(st) +
n−1

∑
i=0

γi ·
(︄

i−1

∏
j=0

π(At+j|St+j)

µ(At+j|St+j)

)︄
· π(At+i|St+i)

µ(At+i|St+i)
((Rt+i + γV(St+i+1)−V(St+i)))

(3.40)

Since the importance sampling product exhibits a high variance, we truncate the impor-
tance weights by the hyperparameters ρ and c, which then leads to the V-trace target.

The two truncation parameters ρ and c play different roles in the target. Firstly, ρ
determines the value that the approximation converges to. More specifically, using the
V-trace target for policy evaluation will not converge to Vπ but to Vπρ , where

πρ(a|s) = min(ρµ(a|s), π(a|s))
∑a′ min(ρµ(a′|s), π(a′|s)) . (3.41)

For large values of ρ the minimum is attained at π(a|s) and the approximation converges
to Vπ since πρ = π. On the other hand, for very small values of ρ the approximation
converges towards Vµ.

In contrast, the parameter c has no influence on the value at convergence, but significant
influence on the variance of the V-trace target since it truncates every element of the product

i−1

∏
j=0

π(At+j|St+j)

µ(At+j|St+j)
. (3.42)
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One strategy is to set a low value for c in order to reduce variance and a high value for ρ
in order to converge towards Vπ. The V-trace target will be leveraged in Chapter 6 and 7.

3.3.4 From Tables to Neural Networks

Until now we have maintained a table with an entry V(s) (or Q(s, a)) for every state s (or
pair (s, a)) that stored our current approximations. While this tabular approach provides us
with convergence results in theory, it prohibits generalization across states and state-action
pairs.

Instead of maintaining a table, deep RL uses a neural network for approximating the
state-values or Q-values, which facilitates generalization in large state and action spaces.
The neural network Vθ with neural network parameters θ is updated according to

θ ←− θ+ α(vtarget −Vθ(st)) · ∇θVθ(st), (3.43)

i.e. the neural network solves a regression task with mean-squared error loss

L =
1
2
(vtarget −Vθ(st))

2. (3.44)

We remark the resemblance with Equation 3.20. In fact, Equation 3.20 is a special case.

3.4 Policy Learning

In the last section, we described how the value function Vπ or Qπ can be approximated for
evaluating a policy π. In this section we will have a look at possible methods that can be used
to find an optimal policy. The methods can be distinguished into value-based, policy-based,
and actor-critic methods.

3.4.1 Value-based Methods

Value-based methods construct a policy indirectly through learning a Q-function Q(s, a).
The selected action in a state s is then given by

π(s) = arg max
a

Q(s, a), (3.45)

which constitutes a greedy action selection because we always sample according to the
maximum value. Algorithms to find the optimal action-value function Q∗ either use policy
iteration or a version of Q-learning.

Policy Iteration

Policy iteration algorithms alternate between an evaluation step and an improvement step.
They start with a randomly initialized Q-function and use the argmax operation as shown
in Equation 3.45 to define the corresponding policy π. They then use policy evaluation as
described in Section 3.3 to find the corresponding Q-function Qπ. The improvement step is
performed by defining a new policy

π′(s) = arg max
a

Qπ(s, a) (3.46)
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and the process repeats afterwards. The policy improvement theorem (see Appendix
Corollary 5.1) ensures that the new policy π′ is at least as good as the old one. Moreover,
the optimal Q-function is found once the new policy is not better than before. During
the generation of trajectories, actions are sampled with an ϵ-greedy approach to ensure
exploration, i.e. with probability ϵ, a random action is taken.

Q-Learning

Different to alternating between estimating Qπ and acting greedily with respect to the
estimate as done in policy iteration, Q-learning (Watkins and Dayan, 1992) approximates
the optimal action-value function Q∗ directly. Q-learning is based on the Bellman optimality
equation (Bellman, 1958)

Q∗(s, a) = ESt+1∼p(·|s,a)[Rt + γ max
a′

Q∗(St+1, a′)|St = s, At = a]. (3.47)

The corresponding update equation for the current Q-function Q is given by

Q(st, at)←− Q(st, at) + α(rt + γ max
a′

Q(st+1, a′)−Q(st, at)). (3.48)

Note that Q-learning is an off-policy algorithm and does not require importance sampling
since the next action a′ is taken by the target policy and the expectation in Equation 3.47
is only dependent on the probability distribution p(·|s, a). Analogous to policy iteration,
during the generation of trajectories, actions are sampled with an ϵ-greedy approach.

Replay Buffer

During estimation of a value function, we generate a trajectory τ = s0, a0, r0, ..., sT, calculate
update targets and update our value function estimates. Afterwards, the trajectory is typically
discarded and a new trajectory is produced for the next update. We thus leverage every
trajectory only once, which is very sample-inefficient.

Instead of discarding the generated experience, we can store it in a so-called replay
buffer (Lin, 1992). The strategy is then to generate a new trajectory, save it in our replay
buffer, sample experience from the buffer and perform an update. In this way, we can reuse
generated experience multiple times, which increases the sample efficiency. The process of
updating our estimates based on sampling from a replay buffer is referred to experience
replay. Experience replay is an important ingredient in off-policy algorithms since these
algorithms can leverage data that has been generated by a different policy. Experience replay
is in particular used by the deep Q-learning algorithm that we explain next.

Deep Q-Learning

Q-learning has been advanced to deep Q-learning (DQN) (Mnih et al., 2015) which leverages a
deep neural network Qθ as function approximator. In order to facilitate sample efficiency and
stability, DQN uses a replay buffer D (Lin, 1992) that stores generated experience (s, a, r, s′)
of states, actions, rewards, and next states. Since Q-learning is an off-policy algorithm, we
can leverage experience in the buffer that has been generated by an arbitrary behavior policy.
In addition to the replay buffer, a target network Qθ′ is leveraged for calculating the target,
which additionally increases the stability. The goal of Qθ is to minimize the loss
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E(s,a,r,s′)∼D[(r + γ max
a′

Qθ′(s′, a′)−Qθ(s, a))2]. (3.49)

The target network is updated after a certain number of update steps. DQN constitutes
one of the most popular value-based RL algorithms and has experienced multiple advance-
ments such as double DQN (Hasselt, 2010), dueling DQN (Wang et al., 2016) or Rainbow
(Hessel et al., 2018). The DQN will be used in Chapter 5 for maximizing information gain.

3.4.2 Policy-based Methods

In contrast to value-based methods that retrieve the policy through the Q-function, policy-
based methods parameterize the policy πθ directly using policy parameters θ. Policy-based
methods are able to learn a stochastic policy and do not rely on the arg max operation for
action selection, which allows them to change their behavior more smoothly.

In episodic environments, such as dialogue, the goal of the policy is to maximize the
expected return in every starting state s0. More formally, the objective is to maximize

J(θ) = Eπθ

[︄
∞

∑
t=0

γtRt

]︄
= ∑

s0

p0(s0)Vπθ(s0). (3.50)

Our goal is to take the gradient of J(θ) with respect to θ in order to optimize πθ using
gradient descent. The policy gradient theorem (Sutton et al., 1999) gives us an analytical
expression on how to achieve this. In order to state it, we define the occupancy measure as
follows.

Definition 4. For a policy π, the occupancy measure dπ(s, a) is defined as

dπ(s, a) = dπ(s) · π(a|s), where dπ(s) = (1− γ)
∞

∑
t=0

γt pπ(St = s), (3.51)

where pπ(St = s) is the probability that s occurs in time step t when generating trajectories using π.

The occupancy measure thus expresses how likely it is to observe a specific state-action
pair when producing trajectories using π. The likelihood for the occurance in time step t is
discounted, where the term (1− γ) is a normalization so that dπ(s, a) defines a probability
distribution. The policy gradient theorem is given as follows.

Theorem 1 (Policy Gradient Theorem). For a policy πθ parameterized by θ, the gradient of
J(θ) = Eπθ

[︁
∑∞

t=0 γtRt
]︁

is given by

∇J(θ) =
1

1− γ
ES,A∼dπθ [Aπθ(S, A)∇θ ln πθ(A|S)]. (3.52)

We provide a proof of the policy gradient theorem in the Appendix in Theorem 6. The
policy gradient has the intuitive interpretation that it will make actions more or less likely
based on the advantage when taking the action. The theorem has many different versions,
where the advantage function is substituted by other values that are based on the return
(Schulman et al., 2016). One version substitutes the advantage function by the Q-function,
which can be derived as follows.
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∇θ J(θ) =
1

1− γ
ES,A∼dπθ [Aπθ(S, A)∇θ ln πθ(A|S)] (3.53)

=
1

1− γ
ES∼dπθ [∑

a
πθ(a|S) · Aπθ(S, a)∇θ ln πθ(a|S)] (3.54)

=
1

1− γ
ES∼dπθ [∑

a
πθ(a|S) · (Qπθ(S, a)−Vπθ(S))∇θ ln πθ(a|S)] (3.55)

=
1

1− γ
ES∼dπθ [∑

a
πθ(a|S) ·Qπθ(S, a)∇θ ln πθ(a|S)] (3.56)

=
1

1− γ
ES,A∼dπθ [Qπθ(S, A)∇θ ln πθ(A|S)] (3.57)

where Equation 3.56 followed since

∑
a

πθ(a|S) ·Vπθ(S)∇θ ln πθ(a|S) = Vπθ(S)∑
a
∇θπθ(a|S) (3.58)

= Vπθ(S)∇θ ∑
a

πθ(a|S) (3.59)

= Vπθ(S)∇θ1 (3.60)
= 0. (3.61)

Off-Policy Policy Gradient

Similar to the off-policy targets for the value-functions that we have discussed in Section 3.3.3,
we can derive an off-policy version of the policy gradient through importance sampling:

∇θ J(θ) =
1

1− γ
ES,A∼dµ

[︃
dπθ(S)
dµ(S)

πθ(A|S)
µ(A|S) Aπθ(S, A)∇θ ln πθ(A|S)

]︃
. (3.62)

Nevertheless, the term dπθ (S)
dµ(S) is difficult to estimate in practice (Imani et al., 2018), which

is why the term is typically omitted (Degris et al., 2012), leading to

∇θ J(θ) =
1

1− γ
ES,A∼dµ

[︃
πθ(A|S)
µ(A|S) Aπθ(S, A)∇θ ln πθ(A|S)

]︃
. (3.63)

In the V-trace algorithm (Espeholt et al., 2018) that will be used in Chapter 6 and 7, the
importance weights are additionally truncated by the hyperparameter ρ, which leads to

∇θ J(θ) =
1

1− γ
ES,A∼dµ

[︃
min(ρ,

πθ(A|S)
µ(A|S) )Aπθ(S, A)∇θ ln πθ(A|S)

]︃
. (3.64)

3.4.3 Actor-Critic Methods

In order to calculate the policy gradient, we require an estimate of Aπθ(st, at) or Qπθ(st, at),
which can be obtained by using a sampled return gt directly. Nevertheless, the usage of
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the return has the disadvantage that it exhibits high variance. Instead of the return, we
can use a function approximater, called a critic, that provides an estimate of Aπθ(st, at) or
Qπθ(st, at). The function approximator is called a critic since the policy actions are reinforced
or suppressed in the policy gradient based on its judgment. If a critic is used for calculating
the policy gradient, the policy is called an actor and the corresponding algorithm an actor-
critic algorithm. The critic is required to approximate Aπθ(st, at) or Qπθ(st, at), which has
been covered in Section 3.3. In order to estimate the advantage function, we can train a
critic Vψ to approximate the state-value function Vπθ and obtain a sample of the advantage
function through

rt + γVψ(st+1)−Vψ(st) (3.65)

due to Equation 3.11. Since actor-critic methods learn both a value-function and a
parameterized policy, they can be thought of as a fusion of policy-based and value-based
methods.

Algorithm 2 V-trace Actor-Critic

Require: neural networks for actor πθ and critic Vψ, learning rates αa and αc, truncation
parameters ρ and c, gradient weights λa, λc, λe, number of new trajectories nnew

1: D ←− {}
2: while true do
3: Generate nnew trajectories τ = s0, a0, r0, ... using πθ
4: Store trajectories s0, a0, πθ(a0|s0), r0, ... in D
5: Sample a mini-batch Dbatch of trajectories from D
6: N, gψ, gθ ←− 0
7: for trajectory τ = s0, a0, µ(a0|s0), r0, ..., sT in Dbatch do
8: vT ←− 0
9: for t = T − 1, ..., 0 do

10: Calculate V-trace target vt according to Equation 3.30
11: gψ ←− gψ + λc(vt −Vψ(st)) · ∇ψVψ(st, at) ▷ towards V-trace target
12: gθ ←− gθ + λaρt[rt + γvt+1 −Vψ(st)]∇θ ln πθ(at|st) ▷ policy gradient
13: gθ ←− gθ + λe∇θH(πθ(·|s)) ▷ entropy
14: end for
15: N ←− N + T
16: end for
17: ψ ←− ψ + αc · 1

N gψ
18: θ ←− θ+ αa · 1

N gθ
19: end while

V-trace Actor-Critic

The V-trace actor-critic algorithm leverages an actor πθ and a critic Vψ that approximates
the state-value function Vπθ . The state-value function is updated using the V-trace target vt
explained in Section 3.3.3:

ψ ←− ψ + αc · (vt −Vψ(st)) · ∇ψVψ(st), (3.66)
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where αc is a learning rate. Given a tuple (st, at, rt, st+1), the policy is updated based on
the off-policy policy gradient in Equation 3.64 and an estimate of the advantage function
(Equation 3.65) as

θ ←− θ+ αa · ρt[rt + γvt+1 −Vψ(st)]∇θ ln πθ(at|st), (3.67)

where αa is a learning rate, ρt = min(ρ, πθ(at|st)
µ(at|st)

) and vt+1 is the V-trace target at time step
t + 1. In addition, in order to circumvent premature convergence and facilitate exploration,
the policy is optimized towards high entropy. For a state s, the entropy H of πθ(·|s) is
defined as

H(πθ(·|s)) = −∑
a

πθ(a|s) log(πθ(a|s)). (3.68)

The entropy attains its maximum if πθ is a uniform distribution and is minimal if there
is an action a such that πθ(a|s) = 1. The higher the entropy, the more actions are likely to
be sampled by πθ(·|s). The entropy loss function thus guarantees that the policy persists
in selecting multiple actions rather than focusing exclusively on a single, potentially sub-
optimal action.

As in deep Q-learning, V-trace leverages a replay buffer D for increased sample efficiency.
Since the algorithm is off-policy, it is possible to use experience that has been generated by
another behavior policy that is for instance a previous version of πθ. During generation,
when the policy πθ takes action at in state st, the value µ(at|st) is defined as πθ(at|st)
and additionally saved in the replay buffer. The neural network weights are updated after
generating nnew new trajectories. We provide the V-trace algorithm with mini-batch sampling
from the replay buffer in Algorithm 2.

3.5 Continual Reinforcement Learning

In the previous section we were concerned with how a RL agent could optimize its behavior
in a fixed, given MDPM. While this leads to optimal behavior in a narrow, static task of
interest, it is only the first step towards truly intelligent behavior. As the world is ever-
changing, RL agents require the ability to continue learning over their lifetime, constantly
adapting to changes in the environment. They need to learn new and more complex tasks
over time, while building on previously acquired knowledge, just like humans. The study of
how RL agents can learn in ever-changing environments is known as continual reinforcement
learning. The general continual RL problem can be formulated through a MDPMCRL that
changes throughout time (Khetarpal et al., 2022):

MCRL(t) =< S(t),A(t), r(t), p(t), p0(t), γ > . (3.69)

A common assumption is local stationarity of the time-dependent MDPMCRL (Khetarpal
et al., 2022; Padakandla et al., 2019). This is the case if there is a sequence of time-steps
t0, t1, ..., tk, ... such that for all k, we have

MCRL(t) =MCRL(tk), tk ≤ t < tk+1 (3.70)

Locally stationary MDPsMCRL give rise to a sequence of MDPs

M0 −→M1 −→M2 −→ ... −→Mk −→ ...
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FIGURE 3.2: In continual RL, an agent is exposed to a sequence of MDPs and
requires various capabilities, summarized in the desiderata.

whereMk =MCRL(tk). The MDPsMk are often referred to as tasks. Many works in
continual RL formulate the general continual RL problem by stating that the RL agent is
exposed to a sequence of MDPs, which coincides with the formulation as a time-dependent
MDP. We call the two different views the sequence view and time-dependent view of
continual RL. The time-dependent view is more intuitive when theMCRL changes smoothly
throughout time whereas the sequence view is more intuitive ifMCRL changes at specific
time-points (i.e. when it is locally stationary). Examples for smooth changes are given by
changing friction, preferences, or wind conditions (Chandak et al., 2020; Liotet et al., 2022;
Xie et al., 2021). Examples where the sequence view is more intuitive is when the agent
plays different games one after the other or conducts conversations about different domains
(Madotto et al., 2021; Powers et al., 2022; Rolnick et al., 2019; Wołczyk et al., 2021). During
continual learning of dialogue policies, the MDP is unlikely to change after every conducted
dialogue. Consequently, we will henceforth focus on local stationarity and use the sequence
view of continual RL.

3.5.1 Objectives and Challenges in Continual RL

Imagine that the RL agent has interacted with the MDP Mk−1 and is now exposed to
Mk. The agent should adapt as fast as possible to the new environment given by Mk.
At the same time, the learner should not forget how to act in Mk−1. The RL agent thus
requires stability in order to not forget how to act in previous MDPs while exhibiting
plasticity for adapting to the current MDP, which is known as stability-plasticity dilemma
in neuroscience. The failure mode of forgetting how to solve previous MDPs is known as
catastrophic forgetting (McCloskey and Cohen, 1989). Catastrophic forgetting in neural
networks occurs when the gradient updates for learning on the current MDP move the
neural network parameters away from solutions that work well on all MDPs. In addition to
fast adaptation and preventing forgetting, the learning agent should be able to transfer what
it has learned from previous experiences to new situations and make use of more recent
experiences to improve performance on capabilities learned earlier. In other words, the
learner should be capable of forward and backward transfer learning. All of this should
be done with only limited memory and neural network capacity (Hadsell et al., 2020). In
summary, the continual learner should fulfill the following points (see also Figure 3.2)

• Prevent catastrophic forgetting: Adapting to a new MDP should not significantly
reduce performance on previously observed MDPs.
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• Fast adaptation and recovery: The learner should be capable of fast adaptation to
novel MDPs and fast recovery when presented with past MDPs.

• Forward/Backward Transfer: The learner should be capable of transferring previously
learned knowledge to new situations and make use of recent experience to improve
capabilities learned earlier.

• Minimal increase in model capacity: The learning method must be scalable and
consequently work with only minimal increase in model capacity.

• Limited memory: The learner has only limited memory in practice.

Due to its multitude of challenges, continual learning has intersections with many other
disciplines such as multi-task learning (Teh et al., 2017), meta-learning (Beck et al., 2023),
transfer-learning (Taylor and Stone, 2009) and representation learning (Javed and White,
2019).

Evaluation

The selection of metrics for evaluating continually learning agents typically depend on the
problem setup. Conventional metrics that are always applicable include the overall reward
or return during a lifetime and the average reward or return per step in a time-window
(Platanios et al., 2020; Rolnick et al., 2019; Schaul et al., 2018). If the continual learning
problem is given by learning from a sequence of distinctive MDPs, it is common to have
evaluation phases during learning (in particular at the time of the MDP change), where the
learner is evaluated on all MDPs that will be seen during the lifetime. In particular, the
learner is evaluated on the performance for unseen MDPs for measuring forward transfer as
well as on how much has been forgotten from previously seen MDPs (Powers et al., 2022;
Wołczyk et al., 2021). We emphasize that this evaluation requires access to all MDPs that
will occur in the lifetime as well as dedicated evaluation phases that are neither always
available in real-world applications nor adequately reflect the future performance of the
agent (Khetarpal et al., 2022).

3.5.2 Continual Learning Approaches

Continual learning methods can be broadly categorized into the following approaches, where
many of them focus on the problem of catastrophic forgetting.

Regularization-based methods (Aljundi et al., 2018; Kirkpatrick et al., 2017; Zenke et al.,
2017) are single-model approaches that penalize the movement of neural network parameters
that are important for solving previous MDPs to circumvent catastrophic forgetting.

Architectural methods dynamically expand the neural network with new MDPs. A naive
approach to prevent catastrophic forgetting is by training an individual model for each arising
MDP. Nevertheless, this has multiple disadvantages such as an increased neural network
parameter size for every new MDP as well as no possibility for forward or backward transfer.
The idea of neural network expansion has led to various more advanced proposals such as
Progressive Networks (Rusu et al., 2016), Dynamically Expandable Networks (Yoon et al.,
2018), Reinforced Continual Learning (Xu and Zhu, 2018) or Supermasks in Superposition
(Wortsman et al., 2020).

Another family of approaches are built on the idea of knowledge distillation from a
teacher into a student model (Hinton et al., 2015). Distillation for continual learning can
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be used to retain previous knowledge by providing a new auxiliary target for the network
being trained (Kaplanis et al., 2019; Li and Hoiem, 2018; Schwarz et al., 2018; Traoré et al.,
2019). In contrast to methods that expand the neural network with new MDPs, the neural
network size for knowledge distillation methods can remain constant.

Instead of storing knowledge inside of neural network parameters, rehearsal-based
methods store previous experience or training examples in a replay buffer (Lin, 1992), so
that the model can continue optimizing on previous MDPs (Aljundi et al., 2019; Chaudhry
et al., 2019; Lopez-Paz and Ranzato, 2017; Riemer et al., 2019; Rolnick et al., 2019). In order to
tackle limited storage capacity, different selection strategies (Aljundi et al., 2019; Isele and
Cosgun, 2018) or pseudo-rehearsal through generative replay (Atkinson et al., 2021; Daniels
et al., 2022; Shin et al., 2017; Ven and Tolias, 2018) have been proposed.

Continual Learning with Experience and Replay (CLEAR)

In this section, we discuss the rehearsal-based continual RL method CLEAR (Rolnick et al.,
2019) that will be used in Chapter 6 and 7. CLEAR addresses the two main challenges of
catastrophic forgetting and fast adaptation and has been shown to achieve state-of-the-art
performance despite being significantly less complicated compared to previous approaches.
CLEAR is an actor-critic algorithm (see Section 3.4.3) that aims for fast adaptation to new
situations and prevention of catastrophic forgetting by training the policy and critic on a
mixture of new and replayed experience. It leverages the off-policy algorithm V-trace that
was discussed in Section 3.4.3 and proposes the following additions.

Fast adaptation: In order to adapt fast to new situations, CLEAR not only learns from
sampled experience of the replay buffer D that likely contains many old trajectories, but also
leverages new experience that has been just generated. More specifically, in every update
step, CLEAR retrieves a dataset Drec consisting of the nrec most recent trajectories from D
and samples data Dold of size nold from the remaining experience in D \Drec. Analogous to
V-trace in Section 3.4.3 and Algorithm 2, we then use the experience in Dboth = Drec ∪Dold
and calculate update gradients

ĝψ = λc ·EDboth [(vt −Vψ(st)) · ∇ψVψ(st)], (3.71)

ĝθ = EDboth [λa · ρt[rt + γvt+1 −Vψ(st)]∇θ ln πθ(at|st) + λe∇θH(πθ(·|st))], (3.72)

where λa, λc, λe ∈ R are hyperparameters. The usage of experience in Drec is supposed
to facilitate fast adaption.

Prevent catastrophic forgetting: In order to prevent catastrophic forgetting of already
acquired knowledge, CLEAR proposes a simple regularization as follows. For a state s
and action a in the replay buffer, let Vold(s) denote the prediction of Vψ at the moment of
collecting state s and µ the policy that took action a in state s (i.e. an old version of πθ).
We can mitigate forgetting of our previous knowledge if the critic prediction Vψ(s) is close
to Vold(s) and the policy distribution πθ(·|s) is close to µ(·|s). This can be achieved by
minimizing the mean-squared error (Vold(s)−Vψ(s))2 and the KL-divergence

KL[µ(·|s)||πθ(·|s)] = ∑
a

µ(a|s) ln
µ(a|s)

πθ(a|s) . (3.73)
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The KL-divergence is zero if and only if µ(·|s) = πθ(·|s) (Cover and Thomas, 2006) and
thus defines an adequate regularization for πθ. Since the objective is to prevent forgetting of
previous knowledge, we apply the regularizations only to data in Dold. This results in the
following update gradients

gψ = ĝψ + λrc ·EDold [(Vold(st)−Vψ(st)) · ∇ψVψ(st)] (3.74)

gθ = ĝθ − λra ·EDold [∇θKL[µ(·|st)||πθ(·|st)]], (3.75)

where λrc, λra ∈ R are hyperparameters. The terms λrc, λra determine the strength of
regularization towards previously acquired knowledge and thus strike a balance between
fast adaptation and the prevention of forgetting. Finally, we use the gradients for updating
our neural network weights as

ψ ←− ψ + αc · gψ, (3.76)
θ ←− θ+ αa · gθ. (3.77)

We perform an update after we have generated nnew many trajectories. A summary is
given in Algorithm 3, where the main differences to the V-trace algorithm (Algorithm 2) are
in line 5, 12 and 13.

Algorithm 3 Continual Learning with Experience and Replay (CLEAR)

Require: neural networks for actor πθ and critic Vψ, learning rates αa and αc, truncation
parameters ρ and c for V-trace, gradient weights λa, λc, λe, λrc, λra, number of trajectories
nrec, nold, nnew

1: D ←− {}
2: while true do
3: Generate nnew trajectories τ = s0, a0, r0, ... using πθ
4: Store trajectories s0, Vψ(st), a0, πθ(·|s0), r0, ... in D
5: Retrieve Drec of nrec most recent trajectories from D ▷ for fast adaptation
6: Sample a mini-batch Dold of size nold from D \Drec
7: Dboth ←− Drec ∪Dold
8: gψ, gθ ←− 0
9: gψ ←− gψ + λc ·EDboth [(vt −Vψ(st)) · ∇ψVψ(st)] ▷ towards V-trace target

10: gθ ←− gθ + λa ·EDboth [ρt[rt + γvt+1 −Vψ(st)]∇θ ln πθ(at|st)] ▷ policy gradient
11: gθ ←− gθ + λe ·EDboth [∇θH(πθ(·|st))] ▷ entropy
12: gψ ←− gψ + λrc ·EDold [(Vold(st)−Vψ(st)) · ∇ψVψ(st)] ▷ mitigate forgetting of critic
13: gθ ←− gθ − λra ·EDold [∇θKL[µ(·|st)||πθ(·|st)]] ▷ mitigate forgetting of actor
14: ψ ←− ψ + αc · gψ
15: θ ←− θ+ αa · gθ
16: end while

3.6 Partially Observable Markov Decision Process (POMDP)

This chapter centered around a Markov decision process with state space S , action space A,
reward function r, transition probability p and starting probability p0. In every step, the RL
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agent obtains the environment state for action selection (Figure 3.1). Consequently, there is
the assumption that the environment state is fully observable, which is often times not the
case, for instance in dialogue as we will see in the next chapter.

A generalization of a MDP that does not rely on the assumption of fully observability
is a partially observable Markov decision process (POMDP) (Kaelbling et al., 1998). In
this setup, the RL agent only obtains an observation that is omitted based on the actual
environment state. The POMDP is formally given by M =< S ,A,O, r, p, p0, pobs, γ >,
where the additional terms are

• O : set of observations

• pobs : observation probability function, where pobs(o|s) denotes the probability of
observation o given state s

Since the agent in a POMDP can not observe the true state but only the observations,
the agent has to act under uncertainty of the environment state. Based on the perceived
observations, the agent can attempt to produce a belief state b, which is defined by a probability
distribution over states that encapsulates the agent’s belief of the true state. For a given belief
state bt, the agent takes an action at. The environment then transitions to a new state st+1
according to p(·|st, at) and emits an observations ot+1 according to pobs(·|st+1). The belief
state bt can then be updated to bt+1 as follows. Utilizing Bayes theorem (Harney, 2003), we
obtain for state s′ ∈ S

bt+1(s′) = p(s′|at, ot+1, bt) (3.78)

=
p(ot+1|s′, at, bt) · p(s′|at, bt)

p(ot+1|bt, at)
(3.79)

=
1

p(ot+1|bt, at)
pobs(ot+1|s′) ·∑

s
p(s′|s, at, bt)p(s|at, bt) (3.80)

=
1

p(ot+1|bt, at)
pobs(ot+1|s′) ·∑

s
p(s′|s, at) · bt(s), (3.81)

where the term p(ot+1|bt, at) can be calculated as

p(ot+1|bt, at) = ∑
s′

p(ot+1|s′, bt, at) · p(s′|bt, at) (3.82)

= ∑
s′

pobs(ot+1|s′) ·∑
s

p(s′|s, bt, at) · p(s|bt, at) (3.83)

= ∑
s′

pobs(ot+1|s′) ·∑
s

p(s′|s, at) · bt(s). (3.84)

For the emitted observation o of a starting state, the belief state b0 can be inferred as

b0(s) = p(s|o) = pobs(o|s) · p(o)
p0(s)

, where (3.85)

p(o) = ∑
s

pobs(o|s) · p0(s). (3.86)
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Note that these calculations require the summation over all state, which is mostly in-
tractable in practice.

3.6.1 Belief MDP

The POMDP can be recast into a MDP, a so-called belief MDP, such that our methods
discussed in this chapter still apply. The belief MDP is given byM =< B,A, rb, pb, pb0 , γ >,
where

• B is the set of belief states over S

• A is the action space as in the POMDP

• rb(b, a) = ∑s b(s) · r(s, a) is the reward function

• pb(b′|b, a) defines the transition probabilities, where

pb(b′|b, a) = ∑
o

p(b′|b, a, o) · p(o|b, a) = ∑
o
1b′=bt+1

· p(o|b, a), (3.87)

1 denotes the indicator function and bt+1 was derived in Equation 3.78.

• pb0 defines the starting belief state probability, where

pb0(b) = ∑
o

p(b|o) · p(o) = ∑
o
1b=b0 · p(o), (3.88)

and b0 was derived in Equation 3.85.

The belief state will be leveraged in Chapter 5 for calculating information gain. Note that
even though the state space itself can be finite, the belief state is infinitely large since there
are infinitely many distributions over S . This can result in seeing the exact same belief state
only once and thus additionally requires the need for generalization across states, i.e. using
function approximators.

3.7 Conclusion

This chapter introduced reinforcement learning, including its objectives and algorithms for
optimizing RL agents. The environment of the RL agent is defined by a MDP, which provides
states and rewards to the agent. The objective of the agent is to take actions in order to
maximize its expected sum of rewards. RL algorithms for optimization were distinguished
by value-based, policy-based and actor-critic approaches, where we discussed off-policy
methods such as DQN and V-trace. Subsequently, we looked into continual RL, where an
agent is exposed to a dynamically changing MDPMCRL. We discussed the continual RL
algorithm CLEAR that adapts the V-trace algorithm in order to improve fast adaptation to
new situations and prevention of catastrophic forgetting. We concluded the chapter with
POMDPs that will be used in the next chapter for making RL amenable for dialogue system
optimization.
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Chapter 4

Dialogue Policy

The dialogue policy is the decision-making component of the task-oriented dialogue system
and selects in every turn the appropriate response in order to steer the conversation towards
task success. This thesis centers around dialogue policy optimization using reinforcement
learning.

4.1 Dialogue as Belief MDP

In task-oriented dialog, we always assume an underlying user goal that drives the user’s
desire to conduct a conversation. Given the goal and the user’s specific behavior, the user
produces an utterance that is passed to the dialogue system. In turn, the system produces a
response based on the first user utterance and the process repeats until the goal has been
fulfilled or the user ends the conversation. The system response is selected by the dialogue
policy, which is the decision-making component of the dialogue system. The difficulty is that
the dialogue system does not know the user goal in advance. Instead, it needs to be inferred
during the conversation based on the user utterances.

In that sense, dialogue is effectively defined through a partially observable Markov deci-
sion process (POMDP), see Section 3.6. The environment the dialogue policy interacts with
is determined by the user, who will define the transition probabilities through its behavior
and user goals. The environment state that incorporates the user goal is unobservable and
needs to be inferred based on the observations, which are given by the user utterances. As
a consequence, the dialogue system is required to produce its own belief state, given the
observations (Williams and Young, 2007). In order to apply the RL methods that we have
developed in Chapter 3, we view the POMDP as a belief MDP where the state space is
substituted by the belief state space (see Section 3.6.1). The dialogue/belief state tracker is
responsible for producing the belief state. In this work, we always assume the belief state is
given and are not concerned with the challenge of producing it.

4.2 Ontology

The scope of what the dialogue system can understand and talk about is defined by an
underlying ontology. As depicted in Figure 4.1, the ontology is comprised of domains, e.g.
restaurants or hotels, domain-specific slots, e.g. the area or price, and values that a slot can
take, e.g west, east, north, south, and center for the area slot. These concepts together define
the scope of information that can be understood by the system, such as the restaurant area or
the number of hotel stars. In particular, it defines the user goals that can be understood. A
user goal is defined by defining a value for every domain-slot pair in the ontology, where a
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dedicated value none indicates no value. In addition, some slots are only requestable by the
user and only have the possible values none and ?. For instance, if a user needs the address
of a hotel that is located in the north with 4 stars and wifi, this can be defined as

G = {Hotel: [stars=4, area=north, wifi=yes, address=?, parking=none, ...],
Restaurant: [price=none, area=none, ...], ...}.

If there is only a single domain, which has at least one value not being none, the arising
dialogue is called single domain dialogue, and multi-domain dialogue else. Multi-domain
dialogues are more difficult since there are more domains included in the conversation,
which makes the fulfillment of the complete dialogue more challenging.

In addition to the user goal definition, the ontology defines for every domain possible
semantic user actions that can be retrieved from a user utterance. If the user informs about
the hotel area being in the north, this can be semantically represented as

Hotel-inform-area-north.

Lastly, the ontology defines the actions of the system for each domain, such as booking
a hotel room or informing on the phone number or name of the requested restaurant,
semantically represented for instance as

Hotel-inform-address-St. Andrew street 18.

In this thesis, the policy works with semantic representations for both states and actions
that are defined by the ontology. Semantic representations have the advantage that they are
both interpretable and controllable and are the common choice in modular task-oriented
dialogue systems.

4.3 States

4.3.1 State Information

The decision of a dialogue policy is commonly based on the hidden information state of the
dialogue system (Williams and Young, 2007; Young et al., 2007). This hidden information
state consists of the following information:

• User goal state: it summarizes the current goal of the user and is central to the fulfill-
ment of the task. Based on the user goal state, the policy can decide to inform on values
or request more information first.

• User action: the user action is important as it includes information related to requests
made by the user. This allows reactive behavior by the policy, e.g. informing on a
requested slot.

• Dialogue history: the dialogue history is important for ensuring the Markov property
and can consist of past user and system actions.
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FIGURE 4.1: The ontology defines the scope of the dialogue system. The ontology
is comprised of domains, slots within the domain, and values that a slot can take.
A specific user goal is then constructed by specifying the values for each slot in
each domain. In addition, the ontology defines user and system actions for every
domain comprised of an intent and slot (and associated value). Once another
domain will be added to the capabilities of the dialogue system, the ontology
grows, leading to a growth in the state and action space of the dialogue system.

In addition, the state often contains information about the database results, for instance
the number of entities that are available given the current predicted user goal (Weisz et al.,
2018; Zhang et al., 2020; Zhu et al., 2022b). Moreover, since the user goal state already
provides a form of dialogue summary, it is common to truncate the dialogue history in-
formation to only consider the last system action in order to have a fixed length history
(Xu et al., 2020; Zhu et al., 2020). Figure 4.3 depicts an example state with the information
that is typically included. While this information is essential for acting optimally, it is not
necessarily sufficient. Humans for instance take into account emotions of the interlocutor
that can additionally support decision-making.

User Goal Belief State

So far, the above state information does not include any probability distribution that measures
our uncertainty about the environment state. Belief state trackers predict the user goal state
based on the observations and infuse uncertainty in the following way (Mrkšić et al., 2017;
Ramadan et al., 2018; van Niekerk et al., 2021). For every domain-slot pair d-s in the
ontology, the belief tracker produces a probability pd−s over possible values. For instance,
the probability distribution for the domain-slot pair restaurant-price could be given as
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FIGURE 4.2: The difference between the unobservable user goal state and the
predicted user goal belief state. The belief state is constructed based on the
observations and is composed of a probability distribution for every domain-slot
pair in the ontology. The distribution information helps the policy to resolve

uncertainty.

prest−price = [cheap : 0.5, moderate : 0.1, expensive : 0.3, none : 0.1],

indicating uncertainty about the value being expensive or cheap. The distribution for
every domain-slot pair informs the policy about possible uncertainties, which can be subse-
quently reduced by the policy through, for instance, confirm actions. Nevertheless, for action
selection the policy typically does not leverage the full distribution in its state representation
since that representation would be very large. Instead, the policy uses only the n highest
probability values in pd−s (excluding the probability for the slot-value none), where n is a
hyperparameter. The uncertainty information in pd−s will be also leveraged in Chapter 5 for
the definition of information gain.

If we assume that the predictions for the different domain-slot pairs are conditionally
independent, we can produce a probability distribution over possible user goal states, i.e.
a user goal belief state, as follows. For a user goal G = {di : si = vi}i, which encodes that
domain-slot pair (di, si) takes value vi, the probability of G is given by

p(G) = ∏
i

pdi−si(vi). (4.1)

The difference between user goal state and user goal belief state is depicted in Figure 4.2.

4.3.2 State Representation

As neural networks are leveraged for function approximation, it is necessary to map the
semantic state into a vectorized representation, i.e. we require a vectorization strategy. The
appropriate choice of state representation is key to the success of any form of RL (Madureira
and Schlangen, 2020) and thus constitutes the first modeling challenge. This is particularly
important in task-oriented dialogue since information for different domains often encompass
the same or similar meaning, e.g. the slots Price and Book Day both appear in the restaurant
and hotel domain, which can be exploited for transfer or continual learning.

The first group of state representation methods produce a single vector v by directly
vectorizing information in the state (Takanobu et al., 2019; Weisz et al., 2018; Wesselmann
et al., 2019; Zhu et al., 2020). For every information in the state, a single value is assigned
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Hotel:
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 Restaurant-inform-phone-0291]
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What price range are you interested in?
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Sure, the phone number is 0291, address is St. Andrew street 18.

Great, thanks! I am also looking for a hotel in the north that has 4 stars.

Vectorization
Strategy

Policy

Hotel-inform-number_hotels, Hotel-request-book day

Hotel: [stars=4, area=north, wifi=yes, ...], Train: [departure: none, day: none, ...], ...
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FIGURE 4.3: Example of state information that is typically used for decision
making. The state is comprised of 1) the user goal belief state, 2) the user act
retrieved from the user utterance, 3) the dialogue history, and 4) the results of
the database query. In order to leverage neural networks for action selection we
need a numerical representation, i.e. a vectorization strategy, which defines the
first modelling challenge in dialogue policy learning. Given the state, the policy

produces a semantic action which is comprised of a list of atomic actions.

which encodes the likelihood of absence or presence. For instance, for every domain-slot
pair d-s in the ontology, the assigned value in v is given by the highest probability of pd−s
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(excluding the value none) in the belief state. This approach results in a state representation
growth if new information needs to be added and ignores the semantic meaning of the
information. It ignores similarities between information such as hotel and restaurant area
and consequently allows only little transfer to other domains.

Another group of methods produces a vector by utilizing hand-coded domain-independent
features for the information of each domain (Casanueva et al., 2018; Chen et al., 2018; Chen
et al., 2020; Lin et al., 2021; Wang et al., 2015). Since the features are domain-independent,
they allow transfer to another domain. However, the development of such features requires
manual work of experts. Moreover, they assume that the domains share their semantic state
structure, which would otherwise hinder domain-independent features.

In order to leverage semantic similarities and facilitate domain transfer without manual
feature engineering, Xu et al. (2020) propose to use learnable vectors for domains, intents,
slots, and values. These vectors are leveraged to produce a fixed size state representation by
averaging over all domains. However, as the number of domains the dialogue policy can
talk about becomes larger, averaging will likely result in information loss. Moreover, their
architecture still largely depends on predefined feature categories (such as user act or user
goal state). It thus does not model how novel information such as emotion can be included.

4.4 Actions

An atomic action is defined as a triplet domain− intent− slot. Examples for atomic actions
are Hotel − request − area or Restaurant − inform − address, see also Figure 4.1. An
associated value for an atomic action (e.g. the specific restaurant address) is subsequently
added in a lexicalization process based on database results. Many works define the action
space as the set of atomic actions (Weisz et al., 2018; Williams and Young, 2007). Nevertheless,
the emergence of more complex dialogues such as multi-domain dialogues (Budzianowski
et al., 2018) in dialogue policy learning requires the policy to take multiple atomic actions
within a turn (e.g. for informing the address and phone number of a restaurant). We thus
define a dialogue policy action as a list of atomic actions (Jhunjhunwala et al., 2020; Shu et al.,
2019; Zhang et al., 2020). We note that the permission of a list of atomic actions enlarges the
action space considerably. Moreover, if the policy is permitted to select an arbitrary large
amount of atomic actions, this can lead to an information overflow for the user.

4.4.1 Action Generation

The requirement of producing a list of atomic actions motivates the usage of RNNs in
dialogue policy research (Shu et al., 2019; Zhang et al., 2020), where each atomic action is
generated by predicting domain, intent and slot sequentially. Nevertheless, these works do
not model how new actions can be integrated.

Works that take into account new actions to be added to the action set compare the
encoded state and action embeddings with each other (Lee, 2017; Vlasov et al., 2019; Xu et al.,
2020), suggesting that exploiting similarities is key not only for state representations but also
for action prediction.
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4.5 Rewards

The reward function encodes the two major objectives of a task-oriented dialogue system:
dialogue success and dialogue efficiency. Dialogue efficiency is encouraged by a small
negative reward in every turn of the conversation. In addition, once the dialogue finished,
the environment emits a large positive or negative reward for dialogue success or failure,
respectively. The sparse reward decelerates the learning speed as the dialogue agent re-
quires many environment interactions to figure out which actions should be reinforced or
suppressed.

In an attempt to obtain dense rewards, researchers investigated the usage of inverse
reinforcement learning (Hou et al., 2021; Huang et al., 2020; Li et al., 2020; Park et al., 2020;
Takanobu et al., 2019). Inverse RL assumes a dataset of expert interactions and retrieves
a reward function that these experts implicitly maximized. Once an approximate reward
function is retrieved, the policy can be optimized using the dense reward to learn to imitate
the experts. However, this requires expert demonstrations and results in a policy that
imitates the experts but does not exceed their performance. Moreover, it is unclear whether
the learned reward function would provide correct feedback when applied to new domains.

Another solution for obtaining more informative feedback is the usage of reward shaping.
In reward shaping, the reward r in every turn is augmented by a shaping function F and the
RL agent uses the shaped reward

r′ = r + F (4.2)

instead of r for optimization (Ng et al., 1999). The shaping function F often encodes expert
knowledge that complements the sparse reward r. For instance, a positive reward can be
provided if the policy requests a slot that has not been requested before or informs on a slot
that has been requested by the user (Kwan et al., 2023; Tseng et al., 2021). In contrast to the
hand-crafted expert rules, Su et al. (2015) leverages the scalar outputs of a RNN for modeling
the shaping function F. The RNN is trained such that the sum of outputs matches the overall
return of the dialogue. However, this method only leverages the environment reward r,
also called extrinsic reward, but no additional information. Instead of solely leveraging
the extrinsic reward of the environment, the RL agent can produce its own reward, called
intrinsic reward, and utilize it for reward shaping. Dialogue policy research has explored
the usage of curiosity (or surprise) as intrinsic reward (Lipton et al., 2018; Wesselmann et al.,
2019). It’s goal is to drive exploration of the agent, thus learning more about the underlying
environment. Curiosity aids learning by encouraging to collect more diverse, previously
unknown experience so that the agent can find the best possible behavior. Curiosity thus
does not directly guide the agent towards useful behavior for the task at hand but only
provides more diverse experience. Consequently, it does not serve as an additional feedback
signal towards the goal.

4.6 Feudal Dialogue Management

The sparse reward, which encodes task success or failure, decelerates the learning speed
as the dialogue agent requires many environment interactions to figure out which actions
contributed to success or failure. This is especially problematic in environments with large
action spaces such as dialogue due to the trial-and-error process of RL, where the evaluation
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of an action requires taking the action and observing the outcome. Intuitively, in task-
oriented dialogue, the task of fulfilling a user goal can be decomposed into 1) learning about
the user goal, and 2) fulfilling the user goal. The hierarchical approach Feudal Dialogue
Management (FDM) (Casanueva et al., 2018) utilizes this idea and takes a step towards more
efficient learning by decomposing the dialogue policy action space into two sub-spaces Ai
and Ag. The purpose of actions in Ai is to obtain more information about the user goal by
confirming or requesting the value of a slot for instance. The second action space Ag is
comprised of all remaining actions in A \Ai, which will be used for fulfilling the user goal,
such as informing the value of a slot or booking an entity. Moreover, a master action space
Am = {ai, ag} is defined for choosing between actions in Ai and Ag. FDM optimizes three
different policies πi, πg and πm that operate on the action spaces Ai,Ag and Am. Given a
belief state bt, the policy πm selects an action from Am = {ai, ag}, thereby deciding whether
to use policy πi or πg for selecting the action that will be passed to the environment.

This construction results in smaller action spaces for the individual policies and has been
shown to lead to a better final performance. However, the policies are optimized using solely
the extrinsic reward measuring task success or failure, which can lead to training instabilities
and reduced convergence speed due to the following reason. Since only the policy πg is
able to take actions that lead to goal fulfillment, appropriate actions of πi can be incorrectly
suppressed. For instance, imagine that πi correctly requested information for unknown
slots and reduced uncertainty through confirmations. Nevertheless, πg failed to inform
on requested values, which led to a dialogue failure and thus the suppression of the taken
actions. The behavior of πi will be consequently suppressed in this case, while the same
behavior will be reinforced in the case that πg managed to provide the correct information.

4.7 Continual Reinforcement Learning for Dialogue

The amount of tasks a dialogue system can help users with is almost endless as dialogue is
the fundamental way of communication for humans. Moreover, the dialogue system will
encounter different user behaviors over time as well as fluctuating user goals, for instance
due to seasonal changes or unexpected circumstances such as pandemics. Consequently,
a dialogue system constantly needs to adapt to the current circumstances and grow as the
amount of tasks it is required to assist with grows. In other words, a dialogue system needs
to possess continual learning capabilities. In terms of continual RL, the MDPMCRL that
defines the environment for the dialogue policy is changing in every aspect:

• the state and action space grow with every newly introduced domain as new informa-
tion must be comprehended and new actions must be taken

• the transition probabilities change over time depending on the user goal distributions
and user behaviors

• the reward function can change if multiple domains are included in a user goal.

Furthermore, different domains possibly exhibit overlapping state information and ac-
tions. For instance, the hotel area and restaurant area convey the same meaning, only for
different domains. Similarly, the act of informing the address is the same for both hotel or
restaurant. A dialogue system that has learned how to answer requests for hotels can thus
use this knowledge to improve on other domains as well. This fact urges the need for the
dialogue system to possess forward and backward transfer capabilities.
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Continual learning is a thriving research field with multiple published surveys (De Lange
et al., 2022; Hadsell et al., 2020; Khetarpal et al., 2022; Mazumder and Liu, 2022; Parisi et al.,
2019) and frameworks (Lomonaco et al., 2021; Normandin et al., 2021; Powers et al., 2022;
Wołczyk et al., 2021). Despite that progress and the pressing need for task-oriented dialogue
systems to continually learn over their lifetime, these systems have been barely touched by
the topic. There have been so far only few works considering continual supervised learning
of dialogue system components. Wu et al. (2019) proposes an architecture based on RNNs for
dialogue state tracking that does not require a pre-defined ontology and prevents forgetting
by leveraging a regularization based method (Kirkpatrick et al., 2017). Zhu et al. (2022a)
address continual learning for dialogue state tracking and learn input embeddings for every
new task that are fed into a frozen pre-trained model. While this approach is parameter-
efficient, it relies on the fact that the pre-trained model is powerful enough to potentially
solve any task without further training if only the input is appropriate. Liu et al. (2021)
proposes a combination of replaying old data and multiple distillation losses for preventing
forgetting in dialogue state tracking.

Continual learning has been studied in natural language generation, where previous
utterances are saved for replay, leading to a continual growth in memory requirements
(Mi et al., 2020). Geng et al. (2021) proposes a pruning, expanding and masking strategy
and evaluates it on continual learning for natural language generation. In the pruning
step, neural network weights with low absolute value are set to zero, effectively freeing
up neural network capacities. Nevertheless, every pruning step requires a subsequent re-
training to regain the original performance. Lee (2017) proposes a task-independent neural
architecture with an action selector. The action selector is a ranking model that calculates the
similarity between state and candidate actions and enables action selection even if the action
space grows. Madotto et al. (2021) introduce an architecture called AdapterCL and train
it in a supervised fashion for intent prediction, state tracking, generation and end-to-end
learning, consequently omitting the dialogue policy component. The AdapterCL network
becomes larger with every additional task and focuses on preventing catastrophic forgetting
by freezing network weights for previous tasks, which precludes backward transfer. As
opposed to the above mentioned approaches, this thesis considers continual RL to optimize
a dialogue policy.

4.8 Conclusion

This chapter framed dialogue as a reinforcement learning problem by viewing it as a POMDP
and subsequently a belief MDP. The dialogue system has to retrieve a dialogue belief state
based on the observations, which are given through the user utterances. The dialogue state
contains information about the predicted user goal, the predicted user action as well as
the dialogue history and database results. Based on this information, the dialogue policy
selects an action, which is comprised of a list of atomic actions. The objective of the dialogue
policy is to take a sequence of actions in order to maximize the sum of rewards, where the
reward encodes dialogue success and efficiency. The reward definition renders dialogue as
a sparse reward problem, which requires additional methods such as intrinsic rewards to
increase sample efficiency. Furthermore, we discussed the urge to equip dialogue systems
with continual learning capabilities due to the large amount of tasks a task-oriented dialogue
system can potentially assist with.
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Chapter 5

What does the User Want?
Information Gain for Hierarchical
Dialogue Policy Optimisation

This chapter summarizes our work on information gain as intrinsic reward for hierarchial
dialogue policy optimisation and gives a verbatim copy of our paper (Geishauser et al.,
2021):

©2021 IEEE. Reprinted, with permission, from C. Geishauser et al. (2021). “What does the
User Want? Information Gain for Hierarchical Dialogue Policy Optimisation”. In: 2021 IEEE

Automatic Speech Recognition and Understanding Workshop (ASRU), pp. 969–976. DOI:
10.1109/ASRU51503.2021.9687856

5.1 Summary

Feudal dialogue management (see Section 4.6) is a hierarchical method that aims for more
efficient learning by optimizing sub-policies πi and πg for the tasks of information seeking
and goal fulfillment. The optimization of πi based on the extrinsic reward measuring
dialogue success can lead to training instabilities since dialogue success is highly affected by
the behavior of πg.

In this work we propose the usage of an intrinsic reward based on information gain in
order to address this issue. Information gain compares the user goal belief states inferred
from the belief state tracker across successive states, yielding a higher reward for greater
dissimilarity. This encodes the fact that a change in the user goal can only happen if new
information has been obtained. Information gain reinforces actions if they gather new
information of the user or resolve uncertainty, such as request or confirmation actions for
appropriate slots. It thus defines a reward signal that directly aids in learning about the
actual task at hand since any goal can be only fulfilled if it is known in the first place. We
train the information seeking policy πi to maximize information gain instead of the extrinsic
reward measuring goal success, consequently correctly rewarding the behavior of πi.

We show in a multitude of experiments with various domains and noise setups that infor-
mation gain leads to improved learning speed as well as better final performance. Moreover,
interactions with humans reveal that the policy using information gain appropriately asks
for information if necessary, leading to a better user experience.

https://doi.org/10.1109/ASRU51503.2021.9687856
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5.2 Personal contributions

The implementation, technical results and writing are my contribution. Songbo Hu and
Hsien-Chin Lin were significantly involved in the human evaluation. Co-authors assisted in
writing and proofreading.
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ABSTRACT

The dialogue management component of a task-oriented dia-
logue system is typically optimised via reinforcement learn-
ing (RL). Optimisation via RL is highly susceptible to sample
inefficiency and instability. The hierarchical approach called
Feudal Dialogue Management takes a step towards more ef-
ficient learning by decomposing the action space. However,
it still suffers from instability due to the reward only being
provided at the end of the dialogue. We propose the usage
of an intrinsic reward based on information gain to address
this issue. Our proposed reward favours actions that resolve
uncertainty or query the user whenever necessary. It enables
the policy to learn how to retrieve the users’ needs efficiently,
which is an integral aspect in every task-oriented conversa-
tion. Our algorithm, which we call FeudalGain, achieves
state-of-the-art results in most environments of the PyDial
framework, outperforming much more complex approaches.
We confirm the sample efficiency and stability of our algo-
rithm through experiments in simulation and a human trial.

Index Terms— Dialogue systems, reinforcement learn-
ing, information gain

1. INTRODUCTION

Task-oriented dialogue systems are characterised by an under-
lying task or a goal that needs to be achieved during the con-
versation in order to help a user, such as managing a schedule
or finding and booking a restaurant. For that, a spoken dia-
logue system needs two key abilities: maintaining the current
state of the dialogue (tracking) and foreseeing how its actions
will impact the conversation (planning). Modular dialogue
systems therefore have a tracking component to maintain in-
formation about the dialogue belief state, and a planning com-
ponent that models the underlying policy, i.e. the selection of
actions [1, 2, 3, 4]. The dialogue belief state defines a proba-
bility distribution over states that includes information about
user preferences, for instance that a user wants a cheap, Ital-
ian restaurant, with the distribution encoding different levels
of uncertainty.

To deal with planning, current state-of-the-art dialogue
systems [5, 6, 7] optimise the policy via some form of re-

inforcement learning (RL) [8]. However, dialogue policy
optimisation using RL is often sample inefficient and unsta-
ble, which is exacerbated by the sparse reward typically given
in task-oriented dialogue systems [9, 10, 11, 4]. To tackle the
problem of sample inefficiency, hierarchical reinforcement
learning has been proposed that subdivides the task tempo-
rally or spatially [12, 13], thereby reducing complexity of the
task and accelerating learning.

For spoken dialogue systems that help users accomplish
any kind of tasks, it is important to understand what the actual
user’s goal is by asking appropriate and targeted questions.
Acquiring information is the first important building block of
a conversation. Due to its significance, it is reasonable to learn
a dedicated policy πi that deals with this sub-task. This has
been proposed in the hierarchical approach called Feudal Di-
alogue Management [14], where the extrinsic reward is used
for optimising πi. However, we argue and show that the ex-
trinsic reward may provide misleading feedback signal for πi
that leads to unstable and less efficient learning.

Instead, we equip the policy with an intrinsic reward
based on information gain that measures the change in prob-
ability distributions between consecutive turns. The dense
reward signal encourages the policy to produce actions that
resolve uncertainty and to query the user in cases where it is
necessary. The policy πi together with our proposed reward
explicitly models how a system can learn to obtain informa-
tion about the dialogue partner, which is an integral aspect in
every conversation.

We conduct our experiments using the PyDial benchmark-
ing environment [15]. Our algorithm FeudalGain achieves
state-of-the-art results in terms of sample efficiency and final
performance in 14 out of 18 environments. We confirm the ef-
fectiveness of our method in a human trial, where our system
directly interacts with humans.

2. RELATED WORK

Information gain (also known as mutual information) mea-
sures the amount of information obtained about one random
variable through observing another random variable. Infor-
mation gain has already been used as feature as well as reward
signal for reinforcement learning. In [16], a dialogue policy
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for clarification is trained using information gain as a policy
feature. Information gain has also been used to build decision
trees for dialogue systems [17, 18].

Different to the extrinsic reward that is produced by the
environment, intrinsic reward is produced by the RL agent it-
self. The purpose of intrinsic reward is to additionally guide
the learning of the agent. Curiosity-driven learning, which
encourages exploration of the state-action space by learning
more about the environment dynamics, has been interpreted
as information gain [19, 20]. In contrast to curiosity that will
decrease the more the agent learns about the environment, the
information gain we use will always be provided. In [21], the
policy is divided into an “explorer” and “exploiter”, using an
intrinsic reward signal for the explorer that is different from
the extrinsic reward for the exploiter. While [21] focus on
exploration, we define an intrinsic reward to foster fast learn-
ing of an information seeking policy. Note that even when
the space is fully explored, one still needs to gather sufficient
information about user needs.

“Answerer in Questioner’s Mind” [22] selects the question
which maximises the information gain of a target class and an
answer given the question in a goal-oriented visual dialogue
task. In [23, 24], information gain is used as a reward in goal-
oriented visual dialogues by leveraging a responder model or
guesser. The belief tracker in dialogue can be interpreted as a
guesser that needs to guess the correct value for each slot in
the belief state, where the policy can ask questions. Different
from [23, 24], we use information gain in a hierarchical set-
ting and provide it only to a sub-policy as (intrinsic) reward.

In [14], there is a dedicated sub-policy for information
gathering as in our case. It is however only optimised with
the extrinsic reward. We introduce an intrinsic reward based
on information gain in the hierarchical setting and thus en-
able fast learning of the user’s needs, an integral ability that
is often neglected in task-oriented dialogue systems.

3. BACKGROUND

3.1. Dialogue Policy Optimisation via RL

The formal framework in RL is given by a Markov decision
processM = {B,A, r, p, p0, γ}. Here, B denotes the (con-
tinuous) belief state space, A is the action space, r is the re-
ward function, p(b′|b, a) models the probability of transition-
ing to state b′ after executing action a in state b, and p0(b)
is the probability of starting in state b. The discount factor
γ ∈ [0, 1] trades off the importance of immediate and future
rewards. At time step t, the agent observes a state bt, chooses
an action at according to a policy π(a|bt), transitions to a new
state bt+1 and observes a reward signal rt = r(bt, at, bt+1) ∈
R. The goal of the agent is to maximise the discounted return
Rt =

∑
i≥0 γ

irt+i in expectation.
Value-based RL methods [8] optimise the policy by max-

imising the Q-values Qπ(bt, at) = Ebt+1:∞,at+1:∞ [Rt|bt, at]

for every state-action pair (bt, at) ∈ B×A. One example here
is Dueling deep Q-networks (DDQN) [25] that optimises a
parameterised Q-network using tuples (bt, at, rt, bt+1) and a
target network for a stochastic gradient step. Policy gradient
methods on the other hand parameterise the policy directly
and aim at maximising Eb0 [R0]. Actor-critic algorithms [8]
build upon policy gradient methods and approximateQπ with
a function approximator, also called critic. The ACER [9] al-
gorithm is one such instance that uses the whole trajectory in
order to do an update step for its critic.

To foster exploration during learning, noisy networks
[26] inject noise into the neural network by substituting each
weight w in the neural network by µ + σ · ε, where µ and σ
are weights and ε is a noise random variable.

We view dialogue as a sequence of turns between a user
and a dialogue system. The belief state in dialogue typically
includes a probability distribution over values for every slot
in the ontology, which expresses how likely it is that the user
wants a specific value such as “Italian” food or “expensive”
price-range. In each turn of the dialogue, for a given belief
state, the system decides which action to take in order to suc-
cessfully complete the user’s goal. This sequential decision-
making task can be optimised with RL algorithms. A range
of RL algorithms have already been applied to dialogue man-
agement, including ACER [27].

3.2. Feudal Dialogue Management

Feudal Dialogue Management [14, 28] is a hierarchical ap-
proach for dialogue policy learning that divides the action
space A into two subsets Ai and Ag . The purpose of ac-
tions in Ai is to obtain more information from the user by
confirming, requesting or selecting the value of a slot. The
second action setAg comprises all other actions, such as gen-
eral actions like goodbye or informing about requested values.
Moreover, a master action spaceAm = {ai, ag} for choosing
between actions in Ai and Ag is defined. In order to produce
an action, a master policy πm first selects an action fromAm,
after which the associated policy πi or πg corresponding to
Ai and Ag is consulted for the final action selection. An ad-
ditional pass action is added to Ai and Ag , which is taken
whenever the other sub-policy is executed. The policy πi is
optimised using a value-based method where the Q-values are
produced for every slot s ∈ {s1, ..., sn} independently using
associated policies πs. The input to each πs is the belief state
including the value distribution of s. The parameters of the
Q-functions are shared among the slots.

To optimise each of the policies, the external reward re
provided by the environment is used. The reward is −1 in
each turn to enforce more efficient dialogues and 0 or 20 in
the very last turn for failure or success of the dialogue.

We note that adding the pass action for πi is very impor-
tant. The reward for a tuple (bt, at, rt, bt+1) with at 6= pass
that we use for updating πi will always be −1 or 0 since suc-
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Utterance ps for s = pricerange re ri πi πg
User I need a restaurant. [0,0,0,0,1]
Sys (πi) What pricerange do you like? [0,0,0,0,1] -1.0 1.0 request-pricerange pass
User Something cheap please. → [0.5,0.3,0.2,0,0]
Sys (πi) Can I confirm that you mean cheap? [0.5,0.3,0.2,0,0] -1.0 0.22 confirm-pricerange pass
User Yes. I need the address. → [0.95,0.05,0,0,0]
Sys (πg) Goodbye. [0.95,0.05,0,0,0] 0.0 0.0 pass bye

Table 1: Example dialogue in the Cambridge restaurant domain. ps denotes the probability distribution over values [cheap,
moderate, expensive, dontcare, none] for slot pricerange given in the belief state. re and ri denote extrinsic and intrinsic reward
given to πi during the conversation. πi tries to retrieve information and resolve uncertainty, yet the extrinsic reward gives no
guidance at all since πg ends the dialogue too early. In contrast, our proposed reward ri correctly rewards the behaviour of πi.
Information gain ri given in Definition 1 is computed by Jensen-Shannon divergence between consecutive value distributions.

cess can be only achieved if information is provided (which
only πg can do). We hence need to update the policy using
tuples where the pass action was taken, i.e. reward the policy
for doing nothing. We empirically verify the necessity for the
pass action in Section 6.2.

In the following, we will work with the FeudalACER al-
gorithm [28] as our baseline and abbreviate it as Feudal. Feu-
dal uses ACER for policies πm and πg and DDQN for πi.

4. INFORMATION GAIN IN POLICY LEARNING

4.1. Drawbacks of Extrinsic Reward in Feudal

Recall that πi merely outputs actions for obtaining informa-
tion about the user preferences. As this is not enough to com-
plete a task, the policy πg mainly determines dialogue success
or failure. While it is reasonable to provide πg and πm with
external reward, it is less obvious for πi. The behaviour of πi
can lead either to reinforcement or suppression if πg misbe-
haves. As an illustrative example, Table 1 shows a dialogue
where πi acted correctly but does not obtain any positive feed-
back from re due to dialogue failure in the end.

4.2. Information Gain

How can we fairly reward πi then? We propose the usage of
an intrinsic reward for πi based on information gain similar to
[23]. The idea is that if we take an action to query information
about a certain slot (e.g. request-area) leading to a change in
the value distribution for that slot, new information has been
gathered and that behaviour should be reinforced. Formally,
we define the intrinsic reward ri as follows.

Definition 1 Let (b, a, b′) ∈ B × Ai × B be a tuple of state,
action and next state where a includes slot s. Let ps and p′s
be the probability distributions over values for s in b and b′,
respectively. Let d be a distance function between probability
distributions. We define

ri(b, a, b
′) := d(ps, p

′
s)

as the information gain (IG) when executing action a in state
b and observing b′.

This reward encodes the goal of πi by reinforcing actions that
gather new information or resolve uncertainty. It separates
learning of πi from the behaviour of πg and independently
models how a system can learn to obtain information about
the user’s needs. Moreover, the reward guides the policy at
every step in contrast to the sparse reward that first has to
be back-propagated. Due to the immediate feedback, the ad-
ditional pass action becomes obsolete for πi and we do not
need to update with tuples (bt, pass, rt, bt+1) anymore. The
policy can now quickly learn how to obtain the user prefer-
ences, which is the first important step towards a successful
dialogue. An example for computing ri together with the cho-
sen actions is depicted in Table 1. In contrast to the external
reward, information gain reinforces the desired behaviour of
πi even though the dialogue failed. Since the probability dis-
tribution is part of the input to the policy, πi can easily build
the relation between the state and the reward. We note that
this reward is only defined and should be only used for ac-
tions that seek to obtain information of the user. Otherwise
it might happen that the user pro-actively provides informa-
tion and an unrelated action gets rewarded. As a result, the
reward can be applied to all scenarios where obtaining infor-
mation from a user is important. This is especially the case
for task-oriented dialogue systems where our focus lies, but
also holds in many more scenarios (conducting an interview,
getting to know a person in chit-chat) as dialogue is generally
an exchange of information.

We remark that the usage of our reward is not restricted to
hierarchical RL and it can also be used as an additional sig-
nal to the external reward. We also emphasise that our dense
reward aids the policy in learning to reach the main goal, i.e.
task completion. It thus differs from rewards based on cu-
riosity or surprise [19, 29] that aim for enhanced exploration
(which decreases as the agent learns more about the environ-
ment). Our reward can be used in tandem with other rewards,
in particular the ones for exploration.
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Fig. 1: The architecture of our FeudalGain algorithm to-
gether with the action selection process and reward compu-
tation of r′i. FeudalGain uses the intrinsic reward r′i as given
in Equation (1) instead of the external reward re for optimis-
ing πi. Also different from Feudal, FeudalGain merges the
policies πm and πg into a single policy πmg with action space
Ag ∪ {ai}.

4.3. FeudalGain

After introducing our intrinsic reward based on information
gain, we now present our FeudalGain algorithm. Most im-
portantly, we substitute the extrinsic reward for our proposed
information gain to optimise the policy πi.

We choose Jensen-Shannon divergence (JS) as our dis-
tance function d, since it is bounded between 0 and 1,
symmetric and defined everywhere, in contrast to Kullback-
Leibler-divergence (KL) [30]. JS for two probability distri-
butions p and q is defined as

JS(p, q) =
1

2
(KL[p||m] + KL[q||m]),

m =
1

2
(p+ q)

In our experiments, we found that rewarding behaviour if
information gain exceeds a certain threshold δ works better
than directly using ri. We henceforth work with the reward

r′i(b, a, b
′) =

{
1, if ri(b, a, b′) ≥ δ
−1, otherwise

(1)

with variables as in Definition 1.
ACER uses the full trajectory to update its critic, which is

why πg needs to take an action in every turn. Feudal solves
this by πg taking the pass action whenever πi takes an action
as shown in Table 1. However, we can avoid that additional
action by merging the policies πm and πg into a single policy
πmg with action space Ag ∪ {ai}, which we employ in our
full algorithm.

Our final algorithm FeudalGain thus uses πmg and πi to-
gether with intrinsic reward r′i for πi. Our full algorithm is
depicted in Figure 1.

5. EXPERIMENTAL SETUP

We implement FeudalGain1 in the PyDial toolkit [31]. The
performance is evaluated using the PyDial benchmarking
environments [15] comprising 18 settings, which are distin-
guished by domain and different semantic error rates, action
masks and user simulator configurations. Unlike other pub-
licly available dialogue toolkits, PyDial uses a belief tracker
that outputs probability distributions rather than binary states,
which enables more expressive distribution comparisons.

Instead of the ε-greedy approach for exploration that was
used for Feudal, we use noisy networks similar to [5]. The
threshold δ for all our experiments in Section 6.1 is set to 0.2.
The FeudalGain policies πmg and πi are trained with ACER
and DDQN, respectively. For each environment, the algo-
rithms are trained on 4000 dialogues with 10 different seeds.
After every 200 training dialogues, the algorithms are eval-
uated on 500 dialogues. The average reward that is shown
is always the extrinsic reward re. The dialogues for our hu-
man trial are collected using DialCrowd [32]. The simulated
user experiments are done on semantic level using the default
focus belief tracker, while the user trial is performed on text-
level using an additional template based natural language gen-
eration module.

We compare FeudalGain to Feudal [28] and the current
state-of-the-art algorithm STRAC [5]. STRAC uses a hier-
archical decision-making model for policy optimisation with
implicit policy decomposition and noisy networks for explo-
ration. STRAC offers two different modes: a single-domain
version STRAC-S that is trained and evaluated on a single do-
main and STRAC-M that is trained on three different domains
but evaluated only on a single domain. STRAC-M trains on
three times as many dialogues as STRAC-S and FeudalGain.
We do not compare to the work of [6] as they use a hand-
coded expert during training. For completeness, we also add
the performance of a hand-coded policy (HDC), which is al-
ready implemented in PyDial.

6. RESULTS

6.1. Results on FeudalGain

We compare FeudalGain to STRAC-S in terms of sample effi-
ciency and final performance. Table 2 shows success rate and
average reward after 400 and 4000 dialogues.

FeudalGain has higher sample efficiency than STRAC-
S in almost all settings and is comparable to STRAC-M al-
though STRAC-M uses three times as many dialogues. This
can be attributed to the immediate reward provided by our
information gain that correctly guides πi in every turn.

Similar conclusions can be drawn after 4000 dialogues,
where FeudalGain is even able to outperform STRAC-M. In-
formation gain hence not only helps in securing more sam-

1Our code will be released at https://pydial.cs.hhu.de/.
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Fig. 2: Ablation study for FeudalGain. “W/o pass” ablates
the additional pass action for πi. NN denotes noisy networks.
IG denotes our proposed information gain addition.
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Fig. 3: Robustness test of FeudalGain against Feudal+NN for
increasing semantic error rate. We use policies that trained for
200 dialogues and 4000 dialogues averaged over 15 seeds.

ple efficient learning but also for achieving high final perfor-
mance. FeudalGain excels in difficult environments, namely
2 and 4, where unreasonable actions are not masked. Feudal-
Gain also performs very well in environment 6 that exhibits a
very high noise level of 30%, which shows that information
gain is robust to high error rates. Final performance is slightly
worse in environment 5, where an “unfriendly” user simulator
is used. The results show that policy optimisation can signifi-
cantly benefit from our reward based on information gain.

6.2. Ablation Study

We conduct an ablation study for FeudalGain to investigate
the difference in stability and convergence speed due to our
proposed changes. We conduct experiments in environment
3 that exhibits a semantic error rate of 15%. We chose this
environment as it is close to human experiment characteristics
[33]. Figure 2 depicts our findings.

We first ablate the pass action for πi by only updating πi
with tuples (bt, at, rt, bt+1) where at 6= pass to empirically

FeudalGain STRAC-S STRAC-M HDC
Task Suc. Rew. Suc. Rew. Suc. Rew. Suc. Rew.

After 400 dialogues

Env1
CR 99.8 14.2 97.7 13.1 99.7 14.0 100.0 14.1
SFR 95.8 11.6 98.2 12.3 99.2 12.9 97.6 12.1
LAP 96.1 11.5 98.5 12.3 98.6 12.2 97.2 11.8

Env2
CR 86.8 10.7 65.5 5.0 90.3 10.2 100.0 14.1
SFR 89.6 10.5 69.8 4.4 87.5 9.0 97.6 12.4
LAP 84.7 9.7 56.9 1.6 89.2 9.1 97.8 11.7

Env3
CR 97.6 12.7 97.2 12.5 97.3 12.7 95.2 10.8
SFR 91.4 9.1 90.4 8.9 93.6 10.5 90.2 8.9
LAP 91.2 9.3 92.5 9.7 92.4 9.6 88.2 8.4

Env4
CR 82.9 8.9 71.0 5.2 75.3 6.6 97.0 11.1
SFR 84.1 8.7 72.7 5.0 77.2 6.4 89.2 8.2
LAP 82.3 8.0 65.9 3.1 79.8 6.9 88.6 8.4

Env5
CR 95.0 11.1 95.3 10.6 95.6 10.8 94.6 9.2
SFR 87.1 6.9 80.6 4.5 88.8 7.5 87.6 6.3
LAP 87.6 6.6 87.8 6.1 86.0 5.6 82.8 4.6

Env6
CR 92.8 10.9 91.9 10.3 90.7 9.9 91.2 9.5
SFR 79.4 5.6 78.5 4.9 83.8 6.6 80.2 6.5
LAP 81.7 6.1 84.6 6.6 81.7 5.7 76.6 5.6

Mean
CR 92.5 11.4 86.4 9.5 91.5 10.7 96.3 11.5
SFR 87.9 8.7 81.7 6.7 88.3 8.8 90.4 9.1
LAP 87.3 8.5 81.0 6.6 88.0 8.2 88.5 8.4

After 4000 dialogues

Env1
CR 99.9 14.1 99.8 14.1 99.8 14.1 100.0 14.1
SFR 99.0 12.7 98.7 12.7 98.5 12.7 97.6 12.1
LAP 97.6 12.0 97.6 12.0 97.8 12.0 97.2 11.8

Env2
CR 98.0 13.3 97.9 13.1 98.4 13.1 100.0 14.1
SFR 98.8 13.7 95.6 12.1 97.5 13.0 97.6 12.4
LAP 98.5 13.3 92.6 11.6 98.0 12.8 97.8 11.7

Env3
CR 98.6 13.0 98.1 13.0 97.9 12.9 95.2 10.8
SFR 95.1 10.4 91.9 10.5 93.0 10.6 90.2 8.9
LAP 91.2 9.5 90.7 9.7 92.1 9.9 88.2 8.4

Env4
CR 98.0 12.5 92.9 11.5 91.3 10.8 97.0 11.1
SFR 93.1 11.2 90.2 10.7 89.2 10.5 89.2 8.2
LAP 91.8 11.1 86.3 9.2 89.7 10.4 83.6 8.4

Env5
CR 97.6 11.9 97.1 11.8 96.5 11.7 94.6 9.2
SFR 88.4 7.1 89.6 8.4 90.1 8.4 87.6 6.3
LAP 87.6 6.6 88.2 6.9 88.5 7.0 82.8 4.6

Env6
CR 94.0 11.0 92.5 11.0 91.5 10.7 91.2 9.5
SFR 88.2 7.9 81.6 7.0 84.5 7.3 80.2 6.5
LAP 83.4 6.8 83.3 6.7 83.2 6.7 76.6 5.6

Mean
CR 97.7 12.6 96.4 12.4 95.9 12.2 96.3 11.5
SFR 93.8 10.5 91.3 10.2 92.1 10.4 90.4 9.1
LAP 91.7 9.9 89.8 9.4 91.6 9.8 88.5 8.4

Table 2: Success rate and average reward (using only re) for
our proposed approach FeudalGain against STRAC-S. Best
performance is marked in bold. Algorithms were tested in the
Cambridge Restaurant (CR), San-Francisco Restaurant (SFR)
and Laptops (LAP) domain. We included STRAC-M and a
hand-coded policy (HDC) as supplemental comparison. Note
that STRAC-M is trained in three domains and therefore uti-
lized three times the amount of data compared to STRAC-S
and FeudalGain. Results of STRAC were taken from [5].

verify that it is needed in order to back-propagate the final
reward to actions taken by πi. The algorithm is not capable of
learning without pass when only the extrinsic reward is used.

While usage of noisy networks can stabilise the learning
for Feudal, the true benefit comes from the addition of infor-
mation gain that results in fast and smooth convergence after
as few as 500 dialogues. The dependence on the seed almost
vanishes when introducing information gain, hence more sta-
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Fig. 4: Training loss for Feudal [28] using noisy networks
(NN) and our proposed information gain reward (IG). We ap-
proximated the loss in every update step by taking 512 sam-
ples from the replay buffer.

ble learning and robustness against randomness in the initial-
isation is achieved. The usage of a single policy πmg in ad-
dition to information gain only led to a small performance
difference in the first 200 dialogues. We hence omitted it in
Figure 2 for better readability.

We further test the robustness of FeudalGain for increas-
ing amount of semantic error rates by comparing it against
Feudal+NN that does not use information gain. Results are
depicted in Figure 3, for policies trained for 200 and 4000 di-
alogues, averaged over 15 seeds. For 200 training dialogues,
the difference between FeudalGain and the baseline is con-
sistent across noise levels. For 4000 training dialogues, the
baseline catches up a little but does not outperform Feudal-
Gain on any of the noise levels.

Lastly, we want to empirically verify that the usage of ex-
trinsic reward may provide misleading feedback for πi, re-
sulting in incorrect policy updates. Figure 4 shows the train-
ing loss for policy πi using Feudal with noisy networks and
information gain. Substituting re for r′i leads to quick and
stable convergence of the algorithm with weaker oscillations.

6.3. Human Evaluation

In order to show that our results transfer from simulation to
humans, we compare FeudalGain against Feudal with noisy
networks (Feudal + NN) in a human trial, where users directly
interact with the two policies. We collected 400 dialogues us-
ing each policy. We took the policies after only 200 training
dialogues that were closest to the average performance in en-
vironment 3. The reward was 11.7 for Feudal + NN and 12.9
for FeudalGain on the simulated user. We chose such a small
number of training dialogues to examine the sample efficiency
of FeudalGain. At the end of each interaction, we asked users
if the dialogue was successful, whether the system asked for
information when necessary (“AskIfNec”) and what the over-

Success Turns AskIfNec Overall
FeudalGain 0.71/0.45∗ 6.5/3.4∗ 3.8/1.4∗ 3.7/1.5∗

Feudal + NN 0.43/0.5 8.1/5.0 3.0/1.5 2.7/1.6

Table 3: Mean/standard deviation for success, number of
turns, whether the system asked for information when nec-
essary and overall performance according to human evalu-
ation. ∗We used the t-test to check statistical significance,
where p < 0.05.

all performance was (“Overall”). Table 3 shows that superior
performance of FeudalGain in terms of success and number
of turns in simulation translates to real users. More interest-
ingly, the rating if information was requested when necessary
is much higher, which confirms that our intrinsic reward en-
ables πi to learn guided information gathering. The overall
rating (“Overall”) is correlated to “AskIfNec”, showing how
important guided information gathering is for the overall per-
ception of the system. The reduced standard deviation shows
the stability of our approach.

7. CONCLUSION

We proposed the use of intrinsic reward within the hierarchi-
cal Feudal Dialogue Management approach for the informa-
tion seeking policy. Our new architecture gracefully deals
with shortcomings such as artificial pass actions and mislead-
ing reward signals that lead to sample inefficiency and insta-
bility. Our proposed reward encourages the policy to seek
useful information from the user and puts more emphasis on
the user’s needs, which is an integral part of dialogue systems
that aid the user in solving any kinds of tasks. We show in
experiments with simulated users that incorporating our re-
ward improves sample efficiency, stability, and quality of the
resulting policy, and that our algorithm FeudalGain algorithm
leads to state-of-the-art results for the PyDial benchmark. We
confirm the results in a human trial where volunteers inter-
acted with our policy. Our results warrant a more widespread
use of intrinsic reward in task-oriented dialogue systems.

In future work, we like to scale our approach to multiple
domains and learn the hierarchical structure automatically.
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Chapter 6

Dynamic Dialogue Policy for Continual
Reinforcement Learning

This chapter summarizes our work on dynamic dialogue policies for continual reinforcement
learning and gives a verbatim copy of our paper (Geishauser et al., 2022):

Christian Geishauser et al. (Oct. 2022). “Dynamic Dialogue Policy for Continual
Reinforcement Learning”. In: Proceedings of the 29th International Conference on Computational

Linguistics. Gyeongju, Republic of Korea: International Committee on Computational
Linguistics, pp. 266–284. URL: https://aclanthology.org/2022.coling-1.21

6.1 Summary

As mentioned in Section 4.7, the dialogue policy requires continual learning abilities due
to the large amount of potential domains it can experience in its lifetime. As the state and
action space of the dialogue policy grows over time due to the introduction of new domains,
the dialogue policy in particular requires an architecture that can incorporate new state
information and actions seamlessly and allows forward transfer to new domains.

In this work we conduct the first study on continual reinforcement learning for dialogue
policies. We study the continual learning setup where domains are introduced sequentially
and only one domain is present for a certain time-period, which allows us to investigate the
effects of forward transfer to new domains and catastrophic forgetting of how to operate in
already observed domains. Moreover, we center our attention on architectural considerations
to address the continual learning challenges arising from growing state and action spaces.

Our contributions are a continual RL framework for dialogue policies consisting of two
baseline architectures (Xu et al., 2020; Zhu et al., 2020), the state-of-the-art continual RL
algorithm CLEAR (Rolnick et al., 2019) and continual learning metrics for studying forward
transfer and forgetting. Moreover, we propose the dynamic dialogue policy transformer
(DDPT), an architecture specifically designed for addressing the challenges of continual
RL for dialogue policies. DDPT consists of a Transformer encoder-decoder structure and
utilizes a pre-trained language model for embedding state information and actions. The
Transformer together with the language model allows us to process a dynamic input and
produce a dynamic output as well as incorporate new information and actions seamlessly
without any growth in network parameter size. In order to reduce the effective state space
during acting, DDPT leverages hard-attention on unnecessary information. Moreover, DDPT
is equipped with a domain gate that facilitates forward transfer to new domains.

We conduct experiments with different domain sequences and user simulators and show
that DDPT is superior in absolute performance and shows significant forward transfer and

https://aclanthology.org/2022.coling-1.21
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robustness against forgetting. We validate the strengths of DDPT in a human trial, which
shows that DDPT is on par with an expert model that requires a model for every domain.

6.2 Personal contributions

The implementation, technical results and writing are my contribution. Co-authors assisted
in writing and proofreading.
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Abstract

Continual learning is one of the key compo-
nents of human learning and a necessary re-
quirement of artificial intelligence. As dialogue
can potentially span infinitely many topics and
tasks, a task-oriented dialogue system must
have the capability to continually learn, dynam-
ically adapting to new challenges while preserv-
ing the knowledge it already acquired. Despite
the importance, continual reinforcement learn-
ing of the dialogue policy has remained largely
unaddressed. The lack of a framework with
training protocols, baseline models and suit-
able metrics, has so far hindered research in
this direction. In this work we fill precisely
this gap, enabling research in dialogue policy
optimisation to go from static to dynamic learn-
ing. We provide a continual learning algorithm,
baseline architectures and metrics for assessing
continual learning models. Moreover, we pro-
pose the dynamic dialogue policy transformer
(DDPT), a novel dynamic architecture that can
integrate new knowledge seamlessly, is capable
of handling large state spaces and obtains sig-
nificant zero-shot performance when being ex-
posed to unseen domains, without any growth
in network parameter size. We validate the
strengths of DDPT in simulation with two user
simulators as well as with humans.

1 Introduction

Task-oriented dialogue systems are characterised
by an underlying task or a goal that needs to be
achieved during the conversation, such as manag-
ing a schedule or finding and booking a restau-
rant. Modular dialogue systems have a tracking
component that maintains information about the
dialogue in a belief state, and a planning compo-
nent that models the underlying policy, i.e., the
selection of actions (Levin and Pieraccini, 1997;
Roy et al., 2000; Williams and Young, 2007; Zhang
et al., 2020b). The spectrum of what a task-oriented
dialogue system can understand and talk about is

defined by an ontology. The ontology defines do-
mains such as restaurants or hotels, slots within a
domain such as the area or price, and values that
a slot can take, such as the area being west and
the price being expensive. As dialogue systems
become more popular and powerful, they should
not be restricted by a static ontology. Instead, they
should be dynamic and grow as the ontology grows,
allowing them to comprehend new information and
talk about new topics – just like humans do.

In the literature, this is referred to as continual
learning (Biesialska et al., 2020; Khetarpal et al.,
2020a; Hadsell et al., 2020). A learner is typi-
cally exposed to a sequence of tasks that have to be
learned in a sequential order. When faced with a
new task, the learner should leverage its past knowl-
edge (forward transfer) and be flexible enough to
rapidly learn how to solve the new task (maintain
plasticity). On the other hand, we must ensure
that the learner does not forget how to solve pre-
vious tasks while learning the new one (prevent
catastrophic forgetting). Rather, a learner should
actually improve its behaviour on previous tasks
after learning a new task, if possible (backward
transfer).

Despite progress in continual learning (Lange
et al., 2019; Parisi et al., 2019; Biesialska et al.,
2020; Khetarpal et al., 2020a; Hadsell et al., 2020),
there is – to the best of our knowledge – no work
that addresses continual reinforcement learning
(continual RL) of the dialogue policy, even though
the policy constitutes a key component of dialogue
systems. Research in this direction is hindered
by the lack of a framework that provides suitable
models, evaluation metrics and training protocols.

In modular task-oriented dialogue systems the
input to the dialogue policy can be modelled in
many different ways (Lipton et al., 2018; Weisz
et al., 2018; Takanobu et al., 2019; Wang et al.,
2015; Casanueva et al., 2018; Xu et al., 2020). An
appropriate choice of state representation is key
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to the success of any form of RL (Madureira and
Schlangen, 2020). In continual RL for the dialogue
policy, this choice is even more essential. Differ-
ent dialogue domains typically share structure and
behaviour that should be reflected in the state and
action representations. The architecture needs to
exploit such common structure, to the benefit of any
algorithm applied to the model. In this work, we
therefore centre our attention on this architecture.
We contribute 1

• the first framework for continual RL to op-
timise the dialogue policy of a task-oriented
dialogue system, two baseline architectures,
an implementation of the state-of-the-art con-
tinual RL algorithm (Rolnick et al., 2018)
and continual learning metrics for evaluation
based on Powers et al. (2021), and

• a further, more sophisticated, new continual
learning architecture based on the transformer
encoder-decoder (Vaswani et al., 2017) and
description embeddings, which we call dy-
namic dialogue policy transformer (DDPT).
Our architecture can seamlessly integrate new
information, has significant zero-shot perfor-
mance and can cope with large state spaces
that naturally arise from a growing number of
domains while maintaining a fixed number of
network parameters.

2 Related Work

2.1 Continual Learning in Task-oriented
Dialogue Systems

Despite progress in continual learning, task-
oriented dialogue systems have been barely
touched by the topic. Lee (2017) proposed a task-
independent neural architecture with an action se-
lector. The action selector is a ranking model that
calculates similarity between state and candidate
actions. Other works concentrated on dialogue
state tracking (Wu et al., 2019) or natural language
generation (Mi et al., 2020; Geng et al., 2021).
Geng et al. (2021) proposed a network pruning and
expanding strategy for natural language generation.
Madotto et al. (2021) introduced an architecture
called AdapterCL and trained it in a supervised
fashion for intent prediction, state tracking, genera-
tion and end-to-end learning. However, that work
focused on preventing catastrophic forgetting and

1https://doi.org/10.5281/zenodo.
7075192

did not address the dialogue policy. As opposed
to the above-mentioned approaches, we consider
continual RL to optimise a dialogue policy.

2.2 Dialogue Policy State Representation

In the absence of works that directly address con-
tinual learning for the dialogue policy, it is worth
looking at approaches that allow dialogue policy
adaptation to new domains and examining them in
the context of continual learning requirements.

The first group among these methods introduces
new parameters to the model when the domain of
operation changes. The approaches directly vec-
torise the belief state, hence the size of the input
vector depends on the domain (as different domains
for instance have different numbers of slots) (Su
et al., 2016; Lipton et al., 2018; Weisz et al., 2018;
Takanobu et al., 2019; Zhu et al., 2020). In the con-
text of continual learning such approaches would
likely preserve the plasticity of the underlying RL
algorithm but would score poorly on forward and
backward transfer.

Another group of methods utilises a hand-coded
domain-independent feature set that allows the pol-
icy to be transferred to different domains (Wang
et al., 2015; Casanueva et al., 2018; Chen et al.,
2018; Chen et al., 2020; Lin et al., 2021). This is
certainly more promising for continual learning, es-
pecially if the requirement is to keep the number of
parameters bounded. However, while such models
might score well on forward and backward transfer,
it is possible that the plasticity of the underlying RL
algorithm is degraded. Moreover, developing such
features requires manual work and it is unclear if
they would be adequate for any domain.

Xu et al. (2020) go a step further in that direc-
tion. They propose the usage of embeddings for
domains, intents, slots and values in order to allow
cross-domain transfer. To deal with the problem
of a growing state space with an increased num-
ber of domains, they propose a simple averaging
mechanism. However, as the number of domains
becomes larger, averaging will likely result in in-
formation loss. Moreover, their architecture still
largely depends on predefined feature categories.

A third option is to exploit similarities between
different domains while learning about a new do-
main. Gašić et al. (2015) use a committee of Gaus-
sian processes together with designed kernel func-
tions in order to define these similarities and there-
fore allow domain extension and training on new
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Figure 1: The amount of information that the dialogue
agent must comprehend and the possible actions it can
take increases as new domains/tasks are introduced.

domains. A similarity-based approach could in
principle score well on all three continual learn-
ing measures. However, it is desirable to minimise
the amount of manual work needed to facilitate
continual learning.

2.3 Dialogue Policy Action Prediction
In the realm of domain adaptation, works assume a
fixed number of actions that are slot-independent,
and focus on the inclusion of slot-dependent ac-
tions when the domain changes (Wang et al., 2015;
Casanueva et al., 2018; Chen et al., 2018; Chen
et al., 2020; Lin et al., 2021). This allows seam-
less addition of new slots, but the integration of
new intents or slot-independent actions requires an
expansion of the model.

Works that allow new actions to be added to
the action set compare the encoded state and ac-
tion embeddings with each other (Lee, 2017; Xu
et al., 2020; Vlasov et al., 2019), suggesting that
exploiting similarities is key not only for state rep-
resentations but also for action prediction.

With multi-domain dialogues it becomes neces-
sary to be able to produce more than one action
in a turn, which is why researchers started to use
recurrent neural network (RNN) models to produce
a sequence of actions in a single turn (Shu et al.,
2019; Zhang et al., 2020a). RNNs are known how-
ever to only provide a limited context dependency.

3 Background

3.1 Continual Reinforcement Learning
In typical RL scenarios, an agent interacts with a
stationary MDP M = ⟨S,A, p, p0, r⟩, where S
and A constitute the state and action space of the
agent, p(s′|s, a) models the probability of transi-
tioning to state s′ after executing action a in state
s, and p0(s) is the probability of starting in state s.

The reward function r defines the observed reward
in every time-step. The goal is to maximise the
cumulative sum of rewards in that MDP.

In contrast, continual reinforcement learning
focuses on non-stationary or changing environ-
ments (Hadsell et al., 2020). Generally speaking,
the agent faces a sequence of Markov decision
processes {Mz}∞z=1 (Lecarpentier and Rachelson,
2019; Chandak et al., 2020; Khetarpal et al., 2020b)
with possibly different transition dynamics, reward
functions or even state or action spaces. The vari-
able z is often referred to as a task (or context) (Cac-
cia et al., 2020; Normandin et al., 2021). While
the MDP can change from episode to episode, it is
often assumed that the agent is exposed to a fixed
MDP for a number of episodes and then switches
to the next MDP. Once a new task (or MDP) is ob-
served, the old task is either never observed again
or only periodically (Rolnick et al., 2018; Powers
et al., 2021). The goal is to retain performance
on all seen tasks. This requires the model to pre-
vent catastrophic forgetting of old tasks while at
the same time adapting to new tasks.

A state-of-the art method for continual RL that
uses a replay memory is CLEAR (Rolnick et al.,
2018). CLEAR manages the trade-off between
preventing catastrophic forgetting and fast adapta-
tion through an on-policy update step as well as an
off-policy update step. The on-policy step is sup-
posed to adapt the policy to the recent task by using
the most recent dialogues while the off-policy step
should lead to retaining performance on old tasks
by updating on old experiences from the replay
buffer. The off-policy update is further regularized
such that policy and critic outputs are close to the
historical prediction. More information on CLEAR
is provided in the Appendix A.1.

In the context of dialogue, a task usually refers
to a domain as defined in Madotto et al. (2021) and
we will use these two terms interchangeably. As an
example setting, a dialogue system is tasked with
fulfilling user goals concerning hotel information
and booking and after some amount of time with
fulfilling goals related to train bookings. In terms
of MDPs, the dialogue system first faces the MDP
Mz1 , z1 = hotel, for some amount of dialogues
and afterwards Mz2 , z2 = train. Once the train
domain is introduced, the state and action space
grows (as a result of the growing ontology) as de-
picted exemplarily in Figure 1. As a consequence,
the model needs to understand new topics such as
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of domains. (c) Our proposed DDPT model uses descriptions for every information which are embedded using a
pretrained language model. The embedded description together with a value for the information is then fed into a
linear layer and a transformer encoder.

the destination of the train and select new actions
such as booking a train. In addition, the probability
distributions p and p0 of Mz2 are different com-
pared to Mz1 since the probability that the user
talks about hotels should be close to 0 while the
probability that the agent’s states contain informa-
tion related to trains is close to 1.0.

3.2 Dialogue Policy in Modular Systems

In modular task-oriented dialogue systems, the de-
cision of a dialogue policy is commonly based on
the hidden information state of the dialogue system.
This hidden information state, according to Young
et al. (2007), should consist of the following infor-
mation: the predicted user action, the predicted user
goal and a representation of the dialogue history.
For reactive behaviour by the policy, the user action
is important as it includes information related to
requests made by the user. The predicted user goal
summarises the current goal of the user, including
specified constraints. Lastly, the dialogue history
representation captures the relevant information
mentioned in the dialogue history, such as the lat-
est system action. The state can also include the
likelihood of the predicted acts, goal and dialogue
history in the form of confidence scores. More-
over, the state often contains information about the
database, for instance the number of entities that
are available given the current predicted user goal.

Each domain that the system can talk about is
either active, meaning that it has already been men-

tioned by the user, or inactive. The active domains
can be derived from the user acts, from the user
goal or tracked directly (van Niekerk et al., 2021).

Finally, the policy is supposed to take actions.
As in (Shu et al., 2019; Zhang et al., 2020a), each
action can be represented as a sequence of tuples
(domain, intent , slot). For instance, an action
could be that the system requests the desired arrival
time of a train or asks for executing a payment.

4 Dynamic Dialogue Policy Transformer

Our goal is to build a model that can talk about a
potentially very large number of domains and is
able to deal with new domains and domain exten-
sions seamlessly without requiring any architec-
tural changes. In particular, the number of model
parameters should remain fixed. This is challeng-
ing since new domains require understanding of
previously unseen information and the ability to
talk about new topics.

Our approach is inspired by the way an employee
would explain and act upon a novel task: 1) de-
scribe the information that can be used and the
actions that can be taken in natural language, 2)
restrict the focus to the information that is impor-
tant for solving the task at hand, 3) when an action
needs to be taken, this action is based on the in-
formation that was attended to (e.g. for the action
to request the area, one would put attention on the
information whether the area is already given). We
propose an architecture that uses the transformer
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encoder with information embeddings (Section 4.1
and Figure 2(c)) to fulfill 1) and 2) and the trans-
former decoder that leverages the domain gate (Sec-
tion 4.2, 4.3 and Figure 3) to fulfill 3), which we
call dynamic dialogue policy transformer (DDPT).

4.1 State Representation

Recall from Section 3.2 that the agent is provided
with information on various concepts f for domain
df : the user goal (domain-slot pairs), the user ac-
tion (intents) and the dialogue history (system in-
tents and database results). We assume that the
agent has access to an external dictionary provid-
ing a natural language description descrf of each
of these, e.g. “area of the hotel” or “number of ho-
tel database results”, which is common in dialogue
state tracking (Rastogi et al., 2020; van Niekerk
et al., 2021; Lee et al., 2021). See Appendix A.5
for the full list of descriptions. During a dialogue,
the dialogue state or belief tracker assigns numeri-
cal values vf , e.g. confidence scores for user goals
or the number of data base results, etc. For every
concept f we define the information embedding

einfof = Lin
([
LM(descrf ),Lin(vf )

])
∈ Rh

where LM denotes applying a language model such
as RoBERTa (Liu et al., 2019) and averaging of the
token embeddings, and Lin denotes a linear layer.
einfof represents information in a high-dimensional
vector space. Intuitively, every information can be
thought of as a node in a graph. The list of infor-
mation embeddings are the input to a transformer
encoder (Vaswani et al., 2017). The attention mech-
anism allows the agent to decide for every informa-
tion embedding einfof on which other embeddings
einfog it can put its attention. With a growing num-
ber of domains that the system can talk about, the
number of information embeddings will increase,
making it more difficult to handle the growing state
space. However, we observe that only information
that is related to active domains is important at the
current point in time. Therefore, we prohibit the
information embeddings from attending to infor-
mation that is related to inactive domains in order
to avoid the issue of growing state spaces. While
the actual state space may be extremely large due
to hundreds of domains, the effective state space
remains small, making it possible to handle a very
large number of domains. Our proposed state en-
coder is depicted in Figure 2(c).

In this way, the state representation meets the
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Figure 3: Proposed action prediction in DDPT using a
transformer decoder. In every decoding step, a token
embedding for domain, intent or slot informs the model
what needs to be predicted and the previous output is
fed into the decoder. In case of domain prediction, we
propose a domain gate that decides whether to choose a
domain that the user currently talks about.

following demands: 1) new concepts can be un-
derstood and incorporated seamlessly into the state
without a growth in network parameters, as long
as they are descriptive; 2) the description embed-
dings from a language model allow forward trans-
fer by exploiting similarities and common structure
among tasks; 3) the value vf allows numerical in-
formation such as confidence scores or other mea-
sures of model uncertainty to be included; 4) the
state space will not be unreasonably large as infor-
mation for inactive domains is masked.

4.2 Action Prediction
Similar to existing work (Shu et al., 2019; Zhang
et al., 2020a) we separately predict domains, in-
tents and slots for action prediction. We define a
domain set D, intent set I and slot set S as follows.
The domain setD consists of all domains the model
has seen so far plus an additional stop domain. The
intent set I and slot set S consist of all intents and
slots we can use for actions, respectively. Every
domain, intent and slot has an embedding vector,
which we obtain by feeding the token of the do-
main, intent or slot into our pretrained language
model. The embedding vectors are then fed into a
linear layer that produces vectors of size Rh. We
thus obtain domain, intent and slot embeddings
bd ∀d ∈ D, bi ∀i ∈ I, and bs ∀s ∈ S.

The policy first chooses a domain. Then,
based on the domain, it picks an intent from
the list of intents that are possible for that do-
main. Lastly, it picks an adequate slot from
the set of possible slots for that domain and in-
tent. This process repeats until the policy selects
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the stop domain. This will lead to a sequence
(domainm, intentm, slotm)

n
m=0. We leverage a

transformer decoder (Vaswani et al., 2017), the
aforementioned embeddings for domains, intents
and slots and similarity matching to produce the
sequence. In every decoding step t the input to the
transformer is bt−1 + lt, where bt−1 is the embed-
ding of the previous prediction and lt is a token
embedding for token domain, intent or slot that
indicates what needs to be predicted in turn t. b−1

is an embedding of a start token.
If we need to predict a domain in step t, we

calculate the scalar product between the decoder
output vector ot and the different domain embed-
dings bd and apply the softmax function to obtain
a probability distribution softmax[ot ⊙ bd, d ∈ D]
over domains from which we can sample. Intent
and slot prediction is analogous. In order to guar-
antee exploration during training and variability
during evaluation, we sample from the distribu-
tions. While it is important to explore domains
during training, during evaluation the domain to
choose should be clear. We hence take the domain
with the highest probability during evaluation.

As in the state representation, the embeddings
using a pretrained language model allow under-
standing of new concepts (such as a new intent) im-
mediately, which facilitates zero-shot performance.
We do not fine-tune any embedding that is produced
by the language model.

4.3 Domain Gate

If the policy is exposed to a new unseen domain,
the most important point to obtain any zero-shot
performance is that the policy predicts the correct
domain to talk about. If we only use similarity
matching of domain embeddings, the policy will
likely predict domains it already knows. In dia-
logue state tracking we often observe that simi-
larity matching approaches predict values they al-
ready know when faced with new unseen values,
which leads to poor zero-shot generalisation (Ras-
togi et al., 2018). To circumvent that, we propose
the domain gate. Let Dcurr be the set of domains
that the user talks about in the current turn. In
every decoding step t where a domain needs to
be predicted, the domain gate obtains ot as input
and predicts the probability pcurr of using a do-
main from Dcurr. When the policy needs to pre-
dict a domain in step t, it now uses the probability
distribution given by pcurr · softmax[ot ⊙ bd, d ∈

Dcurr] + (1− pcurr) · softmax[ot ⊙ bd, d ̸∈ Dcurr].
In this process, the policy does not have to pre-

dict the new domain immediately but can abstractly
first decide whether it wants to use a domain that
the user talks about at the moment. The decoding
process is depicted in Figure 3.

5 Experimental Setup

5.1 Metrics
We follow the setup recently proposed by Pow-
ers et al. (2021), which assumes that our N
tasks/domains z1, ..., zN are represented sequen-
tially and each task zi is assigned a budget kzi . We
can cycle through the tasks M times, leading to a
sequence of tasks x1, ..., xN ·M . The cycling over
tasks defines a more realistic setting than only see-
ing a task once in the agent’s lifetime, in particular
in dialogue systems where new domains are intro-
duced but rarely removed.
Continual evaluation: We evaluate performance
on all tasks periodically during training. We show
the performance for every domain separately to
have an in-depth evaluation and the average perfor-
mance over domains for an overall trend whether
the approaches continually improve.
Forgetting: We follow the definition proposed by
Chaudhry et al. (2018) and Powers et al. (2021).
Let mi,k be a metric achieved on task zi after train-
ing on task xk, such as the average return or the
average dialogue success. For seeds s, tasks zi and
xj , where i < j, we define

Fi,j =
1

s

∑

s

max
k∈[0,j−1]

{mi,k −mi,j}. (1)

Fi,j compares the maximum performance achieved
on task zi before training on task xj to the perfor-
mance for zi after training on task xj . If Fi,j is
positive, the agent has become worse at past task
zi after training on task xj , indicating forgetting.
When Fi,j is negative, the agent has become better
at task zi, indicating backward transfer. We define
Fi as the average over the Fi,j and F as the aver-
age over Fi.
(Zero-Shot) Forward transfer: For seeds s, tasks
zi and zj , where j < i, we define

Zi,j =
1

s

∑

s

mi,j . (2)

We do not substract initial performance as in Pow-
ers et al. (2021) as we are interested in the absolute
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performance telling us how well we do on task zi
after training on a task zj . We define Zi as the
average over the Zi,j and Z as the average over Zi.

5.2 Baselines

We implemented two baselines in order to com-
pare against our proposed DDPT architecture. We
do not include a baseline based on expert-defined
domain-independent features (Wang et al., 2015) as
this requires a significant amount of hand-coding
and suffers from scalabilility issues.

5.2.1 Baseline State Representations
We will abbreviate the following baselines with
Bin and Sem that indicate their characteristic way
of state representation.

Bin: The first baseline uses a flattened dialogue
state for the state representation with binary values
for every information which is the most common
way (Takanobu et al., 2019; Zhu et al., 2020; Weisz
et al., 2018). If a new domain d appears, the in-
put vector must be enlarged in order to incorporate
the information from d and new network param-
eters need to be initialised. The state encoding
can be seen in Figure 2(a). This baseline serves
as a representative of methods where new domains
necessitate additional parameters.

Sem: The second baseline implements the idea
from Xu et al. (2020), which uses trainable embed-
dings for domains, intents, slots and values that can
capture semantic meaning and allow cross-domain
transfer. Using trainable embeddings, one repre-
sentation is calculated for every feature in every
feature category (such as user-act, user goal, etc.)
in every domain. The feature representations in a
category are then averaged over domains to obtain
a final representation. More information can be
found in Appendix A.4. This baseline serves as a
representative of methods where feature represen-
tations remain fixed.

5.2.2 Action Prediction for Baselines
Unlike DDPT, which uses a transformer for ac-
tion prediction, the baselines Bin and Sem use an
RNN model for action prediction (Shu et al., 2019;
Zhang et al., 2020a). This model uses the decoding
process explained in Section 4.2 with the exception
that the baselines use trainable embeddings for do-
main, intent and slot (randomly initialised) instead
of using embeddings from a pretrained language
model as DDPT does. Moreover, they do not use
the proposed domain gate.

5.3 Setup
We use ConvLab-2 (Zhu et al., 2020) as the back-
bone of our implementation. We take five different
tasks from the MultiWOZ dataset (Budzianowski
et al., 2018) which are hotel, restaurant, train, taxi
and attraction. Hotel, restaurant and train are more
difficult compared to attraction and taxi as they
require the agent to do bookings in addition to
providing information about requested slots. We
exclude police and hospital from the task list as
they are trivial. We use the rule-based dialogue
state tracker and the rule-based user simulator pro-
vided in ConvLab-2 (Zhu et al., 2020) to conduct
our experiments. Typically, the reward provided
is −1 in every turn to encourage efficiency, and a
reward of 80 or−40 for dialogue success or failure.
A dialogue is successful if the system provided the
requested information to the user and booked the
correct entities (if possible). We stick to the above
reward formulation with one exception: Instead of
the turn level reward of−1, we propose to use infor-
mation overload (Roetzel, 2019). The reason is that
dialogue policies tend to over-generate actions, es-
pecially if they are trained from scratch. While the
user simulator ignores the unnecessary actions, real
humans do not. We define information overload
for an action (domainm, intentm, slotm)

n
m=1 as

rio = −ρ · n, where ρ ∈ N defines the degree of
the penalty. Information overload generalizes the
reward of −1 in single action scenarios. We use
ρ = 3 in the experiments.

We train each of the three architectures using
CLEAR (Rolnick et al., 2018). We set the replay
buffer capacity to 5000 dialogues and use reservoir
sampling (Isele and Cosgun, 2018) when the buffer
is full. We assign a budget of 2000 dialogues to
restaurant, hotel and train and 1000 to attraction
and taxi and cycle through these tasks two times,
resulting in 16000 training dialogues in total. Since
task ordering is still an open area of research (Jiang
et al., 2020), we test three different permutations
so that our results do not depend on a specific or-
der. The domain orders we use are 1) easy-to-hard:
attraction, taxi, train, restaurant, hotel 2) hard-to-
easy: hotel, restaurant, train, taxi, attraction and 3)
mixed: restaurant, attraction, hotel, taxi, train.

6 Results

6.1 Continual Evaluation
We show performance in terms of average return
for all three task orders in Figure 4(a)-(c). The plots
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Figure 4: Training Bin, Sem and DDPT (ours) using CLEAR on three different domain orders, each with 5 different
seeds, by interacting with the rule-based user simulator. Each model is evaluated every 500 training dialogues on
100 dialogues per domain. The plots show the average return, where performance is averaged over domains. The
vertical line at 8000 dialogues indicates the start of cycle 2. The shaded area represents standard deviation. Gold
serves as an upper bound.

show the performance averaged over domains. We
refer to Appendix A.8 for in-depth evaluations for
each individual domain. The horizontal line Gold
denotes an upper limit for the models that was ob-
tained by training a Bin model separately on each
domain until convergence. We can observe that
DDPT outperforms the baselines regardless of task
order, almost reaching the upper bound. We will
see in Section 6.2 that the baselines suffer more
from forgetting compared to DDPT, such that train-
ing on a new domain reduces performance on pre-
vious domains. We suspect that this contributes to
the lower final performance of the baselines. More-
over, we can observe that the final performance
of DDPT barely depends on a specific task order.
Nevertheless, we can see that training starts off
faster in easy-to-hard order, which shows that be-
haviour learned for attraction transfers well to other
domains. Lastly, the second training cycle is nec-
essary for increasing performance of the models.
We note that even though it looks like the baselines
don’t learn at all in the first round, they do learn
but tend to forget previous knowledge. This can be
observed in detail in Appendix A.8.

6.2 Forward Transfer and Forgetting

We calculated forward and forgetting metrics as
explained in Section 5.1. Table 1 shows success
rates instead of average return because success is
easier to interpret. We can see for every model
the summary statistics F and Z measuring average
forgetting and forward transfer, respectively. To
obtain lower bounds we added forward and forget-
ting of a random model that is initialised randomly
again every time it observes a domain.

Table 1 reveals that DDPT outperforms the base-
lines significantly in terms of absolute numbers
and also relative numbers compared to the random
performance. As expected, Bin shows almost no
zero-shot performance improvement compared to
the random model, whereas Sem obtains slight im-
provement. DDPT shows large forward transfer
capabilities and strong robustness against forget-
ting. We attribute this to the frozen description and
action embeddings stemming from the language
model and the domain gate. The language model
allows us to interpret new information and actions
immediately, enabling the model to draw connec-
tions between learned tasks and new ones. At the
same time, frozen embeddings are robust to forget-
ting. The domain gate allows the model to choose
the domain more abstractly without initial explo-
ration due to the decision between current or non-
current domains, which facilitates zero-shot per-
formance. Moreover, the baselines need to make a
hard decision between domains (balancing between
choosing a domain we learn about at the moment
and old domains), whereas the domain decision for
DDPT is abstracted through the domain gate, lead-
ing to robustness against forgetting. Both baselines
perform substantially better than the lower bound,
suggesting that these are non-trivial baselines.

6.3 Benefits of Domain Gate

In order to analyse the contribution of the domain
gate to the forward capabilities of DDPT, we train
a DDPT model without domain gate on the easy-
to-hard order, where DDPT showed the highest
forward transfer. From Table 2 we can observe that
performance drops significantly for all domains if
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Easy-to-hard Hard-to-easy Mixed order Random
Model F ↓ Z ↑ F ↓ Z ↑ F ↓ Z ↑ F ↓ Z ↑

Bin 0.14 0.39 0.14 0.45 0.14 0.38 0.43 0.39
Sem 0.20 0.39 0.17 0.37 0.18 0.29 0.43 0.26

DDPT 0.01 0.73 0.02 0.68 0.03 0.57 0.43 0.34

Table 1: Showing summary statistics in terms of success
for forgetting F (ranging between -1 and 1, the lower
the better) and forward transfer Z (ranging between 0
and 1, the higher the better).

Taxi Train Restaurant Hotel Z ↑
DDPT 0.90 0.76 0.73 0.53 0.73

DDPT w/o domain gate 0.68 0.19 0.57 0.28 0.43

Table 2: Forward transfer metrics Zi in terms of success
for different domains i trained on easy-to-hard order
with and without domain gate.

the domain gate is not employed, which shows the
importance of this mechanism.

6.4 Results on Transformer-based Simulator
In order to strengthen our results and show that they
do not depend on the simulator used, we conducted
an additional experiment using the transformer-
based user simulator TUS (Lin et al., 2021). We
only show results for the mixed order, having in
mind that results have not been dependent on the
domain order used. Figure 5 shows that DDPT
again outperforms the baseline.

6.5 Results on Human Trial
We further validate the results by conducting a
human trial. We compare Bin, Gold and DDPT,
where Bin and DDPT were trained on the mixed
domain order. We hire humans through Amazon
Mechanical Turk and let them directly interact
with our systems, thereby collecting 258, 278 and
296 dialogues for Bin, Gold and DDPT, respec-
tively. After a user finished the dialogue we asked
1) whether the dialogue was successful (Success),
2) whether the system often mentioned something
the user did not ask for such as a wrong domain
(UnnecInfo) 3), whether the system gave too much
information (TooMuchInfo) and 4) about the gen-
eral performance (Performance). Table 3 shows
that the upper bound Gold and DDPT perform
equally well (p > 0.05) in every metric whereas
Bin performs statistically significant worse. The
low performance of Bin can be partially attributed
to frequently choosing a wrong domain that hu-
mans are more sensitive to than a user simulator.
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Figure 5: Training Bin, Sem and DDPT (ours) on the
mixed domain order with the transformer based user
simulator TUS.

Success ↑ UnnecInfo ↓ TooMuchInfo ↓ Performance ↑
Bin 0.45 3.98 3.15 2.45

Gold 0.81 2.79 2.71 3.65
DDPT 0.77 2.75 2.56 3.67

Table 3: Human trial results where Bin, Gold and DDPT
interacted with real users. There is no statistically sig-
nificant difference (p > 0.05) between DDPT and Gold,
while Bin is statistically significantly worse (p < 0.05)
than Gold and DDPT.

Example dialogues are given in Appendix A.6.

7 Conclusion

In this work we provided an algorithm, baseline
models and evaluation metrics to enable continual
RL for dialogue policy optimisation. Moreover,
we proposed a dynamic dialogue policy model
called DDPT that builds on information descrip-
tions, a pretrained language model and the trans-
former encoder-decoder architecture. It integrates
new information seamlessly as long as it is descrip-
tive, and obtains significant zero-shot performance
on unseen domains while being robust to forgetting.
The strengths of DDPT were validated in simula-
tion with two simulators as well as humans. This
opens the door for building evolving dialogue sys-
tems, that continually expand their knowledge and
improve their behaviour throughout their lifetime.
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A Appendix

A.1 Background on CLEAR

A.1.1 VTRACE Algorithm
VTRACE (Espeholt et al., 2018) is an off-policy
actor critic algorithm. As such, it optimizes both
a policy πθ and a corresponding critic Vψ that es-
timates the state-value function V of πθ. Actor
and critic are both updated using experience from
a replay buffer B.

Given a trajectory τ = (st, at, rt)
t=k+n
t=k gener-

ated by a behaviour policy µ, the n-steps vtrace-
target for V (sk) is defined as

vk = V (sk) +
k+n−1∑

t=k

γt−k(
t−1∏

i=k

ci)δtV,

where δtV = ρt(rt + γV (st+1)− V (st)) is a tem-
poral difference for V , and ρt = min(ρ, π(at|st)µ(at|st))

and ci = min(c, π(ai|si)µ(ai|si)) are truncated importance
sampling weights. The scalars ρ and c are hyperpa-
rameters where it is assumed that ρ ≥ c.
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The critic function is then optimized to minimize
the gap between its prediction and the vtrace-target:

Lcritic(ψ) = Eτ∼B[(vk − Vψ(sk))2] (3)

The actor is optimized using the following off-
policy policy gradient:

Eτ∼B[
π(ak|sk)
µ(ak|sk)

Ak∇θ log πθ(ak|sk)] (4)

where Ak = (rk+ γvk+1−Vψ(sk)) is an estimate
of the advantage function. To prevent premature
convergence, they add an entropy loss Lentropy(θ)
during optimization.

A.1.2 CLEAR
CLEAR is a continual learning algorithm that
adapts VTRACE to fulfill the continual learning
requirements. The goal is to obtain fast adaptation
capabilities as well as preventing catastrophic for-
getting. Fast adaptation is tackled by using the most
recent trajectories instead of randomly sampling
from the buffer B in Equations 3 and 4.

In order to prevent catastrophic forgetting, they
sample non-recent experience from the replay
buffer and update policy and critic using Equations
3 and 4. To further regularize these non-recent up-
dates, they introduce regularization losses Lπ−reg
and Lv−reg. Lv−reg forces the critic prediction to
be close to the historic prediction through a mean-
squared error loss. Lπ−reg regularizes the actor
to minimize the KL-divergence between the be-
haviour policy µ and current policy πθ:

Lv−reg(ψ) = Eτ∼B[(Vψ(sk)− Vreplay(sk))2]

Lπ−reg(θ) = Eτ∼B[
∑

a

µ(a|sk) log
µ(a|sk)

πθ(a|sk)
]

An online-offline ratio determines how many re-
cent and non-recent experience is used in an update,
thereby trading-off fast adaptation and catastrophic
forgetting prevention.

A.2 Training details
For the baselines, the MLP encoder uses a 3-layer
MLP with hidden dimension of 128 and RELU as
activation function. We use a GRU with 2 layers
and input size as well as hidden size of 128 for
action decoding. The domain, intent and slot em-
beddings for action prediction have a size of 64.

They are fed through a linear layer that projects it
to a vector of size 128 (same size as GRU output)
in order to allow computation of the scalar prod-
uct with the GRU output. The semantic encoding
in Sem uses an embedding size of 32 for domain,
intent, slot and values. The critic for Bin and Sem
has the same architecture as the MLP encoder, with
an additional linear layer to project the output to a
real valued number.

For the DDPT model, we use an input size and
hidden size of 128 in both transformer encoder
and decoder. We use two heads for the encoder
and decoder, 4 transformer layers for the encoder
and 2 for the decoder. The critic for DDPT has
the same architecture as the transformer encoder,
obtaining the same input as the policy module plus
an additional CLS vector (as in RoBERTa). The
output of the CLS vector is fed into a linear layer
to obtain the critic prediction.

For every model, we use the same training con-
figurations. We use the ADAM optimiser (Kingma
and Ba, 2015) with a learning rate of 5e-5 and 1e-4
for policy and critic module, respectively. We sam-
ple a batch of 64 episodes for updating the model
after every 2 new dialogues. The replay buffer size
is set to 5000. For the VTRACE algorithm, the
parameters ρ̄ and c̄ are set to 1.0. For CLEAR
we use an online-offline ratio of 0.2, i.e. 20% of
the dialogues in a batch are from the most recent
dialogues and the remaining 80% from historical
dialogues. The regularization losses are weighted
by 0.1 and the entropy loss by 0.01.

We used a NVIDIA Tesla T4 provided by the
Google Cloud Platform for training the models.
The training of one model took 10 to 16 hours
depending on the architecture used.

A.3 Masking of illegal actions
To aid the policy in the difficult RL environment,
we add a simple masking mechanism that prohibits
illegal actions. The action masking includes the
following

• If the data base query tells us that entities for a
domain are available, the policy is not allowed
to say that there are no entities available.

• If there is no entity found with the current
constraints, the policy is not allowed to inform
on information about entities.

• The Booking domain is only usable for hotel
and restaurant.
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A.4 Baselines

As mentioned in Section 5.2, the second baseline
incorporates the idea from Xu et al. (2020), which
uses trainable embeddings for domains, intents and
slots to allow cross-domain transfer. For every
feature category (such as user-act, user goal, etc.)
and every domain, it calculates for every feature
in that category a representation using trainable
domain, intent and slot embeddings. The features
in a category are then averaged over domains to
obtain a final representation.

For instance, considering the user-act category
for a domain d, the user act (d, ik, sk)

n
k=0 is

first embedded as ŝu-act,d =
1
n

∑n
k=0[vd,vik ,vsk ],

where vd,vik and vsk are trainable embeddings
for domain d, intents ik and slots sk and after-
wards fed through a residual block, leading to
su-act,d = ŝu-act,d + ReLU(Wu-actŝu-act,d + bu-act).
If there is no user-act for domain d, we use an
embedding for no-user-act to indicate that. The
overall feature representation for the user-act is
then given by su-act =

1
|D|
∑

d∈D su-act,d.
The representations for different feature cate-

gories are then concatenated and fed into a multi-
layer perceptron encoder. The state encoding can
be seen in Figure 2(b). We abbreviate this baselines
as Sem as it uses semantic features.

A.5 Descriptions

Our DDPT model uses descriptions for every possi-
ble information. This allows us to seamlessly deal
with new information we have not seen before yet
by leveraging a pretrained language model. The
language model provides us token embeddings for
the description, which are averaged in order to ob-
tain the description embedding. The descriptions
are built as follows.

• For every domain d and every slot s the user
can inform on, the description is given by
user goal <d> <s>. The correspond-
ing value is 1, if that slot has been mentioned
and 0 else.

• For every atomic user act d i s that was
used in the current turn, the description is
given by user act <d> <i> <s>. We
consider each atomic user act as one infor-
mation and only provide user acts that were
used in the current turn to the model with a
corresponding value of 1.

A�rac�on
Turn 0
User: I'm looking for a night club in the north area. 

System: im sorry, we do not have a nightclub a�rac�on like that, could i help you find something else? 
Turn 1
User: Is there a night club in the centre?
System: sure, ballare is located in the centre, the postcode is cb23na and the entrance fee is 5 pounds. 
Turn 2 

User: thank you, bye 
System: youre welcome. let us know if you need anything else. 

Restaurant
Turn 0
User: I am interested in making a restaurant booking. 

System: Did you want italian or not italian food? 
Turn 1
User: I would like cheap Chinese food
System: may i suggest charlie chan? its located at regent street city centre and the phone number is 01223361763 
Turn 2 

User: Can you book it on Thursday for 2 people at around 19.45 
System: ok ive got you booked for thursday. your reference number is 00000010. 
Turn 3 

User: thank you very much 
System: Thanks for your par�cipa�on. 

Hotel
Turn 0
User: I need to book a hotel 
System: will you be staying at a guesthouse? what is your price range and what ameni�es are you looking for? 
Turn 1
User: I will stay at a guesthouse. I need parking and 3 stars
System: i recommend bridge guest house. it is in the moderate price range. its phone number is 01223247942. 
Turn 2 

User: What is the address? 
System: bridge guest house is located at 151 hills road and has a postcode of cb28rj. does this sound okay? 
Turn 3 

User: bye 
System: Thanks for your par�cipa�on. 

Figure 6: Example dialogues that were collected during
the human trial. Users hired through Amazon Mechani-
cal Turk interact with our DDPT model.

• For every atomic system act d i s that
was used in the previous turn, the descrip-
tion is given by last system act <d>
<i> <s> with a corresponding value of 1.

• For every domain dwhere a data base query is
possible to obtain the number of entities that
fulfill the user constraints, the description is
given by data base <d> <number of
entities> with a corresponding value in-
dicating the number of search results.

• For every domain d where an entity can be
booked, the description is given by general
<d> <booked> with a binary indicating
whether an entity has already been booked.

A.6 Human trial

We conducted a human trial to validate our results
in simulation. The website was build using Di-
alCrowd (Lee et al., 2018) and users were hired
using Amazon Mechanical Turk. We used Set-
SUMBT (van Niekerk et al., 2021) as belief tracker
and SC-GPT (Peng et al., 2020) as NLG module
to accompany the dialogue policies Bin, Gold and
DDPT in the dialogue system pipelines. Example
dialogues, where DDPT interacted with users hired
through Amazon Mechanical Turk, are depicted in
Figure 6.
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Easy-to-hard Hard-to-easy Mixed order
Task Bin Sem DDPT Bin Sem DDPT Bin Sem DDPT

Attraction / / / 0.43 0.35 0.83 0.60 0.33 0.79
Taxi 0.51 0.75 0.90 0.51 0.47 0.85 0.35 0.43 0.77
Train 0.21 0.18 0.76 0.23 0.15 0.28 0.17 0.09 0.34

Restaurant 0.47 0.36 0.73 0.62 0.52 0.74 / / /
Hotel 0.36 0.26 0.53 / / / 0.39 0.28 0.39

Average 0.39 0.39 0.73 0.45 0.37 0.68 0.38 0.29 0.57
Random 0.39 0.26 0.34 0.39 0.26 0.34 0.39 0.26 0.34

Table 4: Forward transfer table showing for every do-
main i the metric Zi in terms of success rate, where
numbers range between 0 and 1. The higher the number,
the more forward transfer is achieved.

Easy-to-hard Hard-to-easy Mixed order Random
Task Bin Sem DDPT Bin Sem DDPT Bin Sem DDPT

Attraction 0.28 0.49 0.03 0.08 0.09 0.02 0.29 0.40 0.0
Taxi 0.13 0.15 0.01 0.01 0.01 0.02 0.01 0.02 0.0
Train 0.18 0.20 0.02 0.13 0.14 -0.01 0.03 0.03 0.0

Restaurant 0.06 0.11 -0.01 0.16 0.19 0.0 0.22 0.26 0.09
Hotel 0.04 0.07 0.0 0.32 0.41 0.07 0.14 0.19 0.03

Average 0.14 0.20 0.01 0.14 0.17 0.02 0.14 0.18 0.03 0.43

Table 5: Forgetting table showing for every domain i the
metric Fi in terms of success rate, where numbers range
between -1 and 1. Negative numbers indicate backward
transfer whereas positive numbers indicate forgetting.

Easy-to-hard Hard-to-easy Mixed order
Task Bin Sem DDPT Bin Sem DDPT Bin Sem DDPT

Attraction / / / -88 -124 12 -16 -125 -3
Taxi -91 -32 23 -65 -117 13 -85 -127 -12
Train -149 -156 -17 -66 -180 -108 -140 -189 -112

Restaurant -94 -119 -15 -15 -97 -19 / / /
Hotel -121 -143 -81 / / / -45 -139 -107

Average -114 -113 -23 -58 -129 -25 -71 -145 -58

Table 6: Forward transfer table showing for every
domain i the metric Zi in terms of average return.
The higher the number, the more forward transfer is
achieved.

Easy-to-hard Hard-to-easy Mixed order
Task Bin Sem DDPT Bin Sem DDPT Bin Sem DDPT

Attraction 99 151 6 34 36 2 93 126 1
Taxi 73 89 4 16 23 4 18 29 1
Train 68 68 1 43 49 -2 10 10 -1

Restaurant 35 38 -1 59 71 2 78 91 26
Hotel 12 21 -1 89 112 18 51 59 7

Average 58 73 2 48 58 5 50 63 7

Table 7: Forgetting table showing for every domain i the
metric Fi in terms of average return. Negative numbers
indicate backward transfer whereas positive numbers
indicate forgetting.

A.7 Forward Transfer and Forgetting

We provide the forward and forgetting tables in
terms of success rate and average return in Tables
4, 5, 6, 7.

A.8 Continual Evaluation

Here, we provide in-depth results for all experi-
ments. Each graph shows the performance of a sin-
gle domain during training. Moreover, we provide

the average performance over domains in terms of
success rate in Figure 7 to complement Figure 4.
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Figure 7: Training the three architectures Bin, Sem and DDPT using CLEAR on three different domain orders,
each with 5 different seeds. Each model is evaluated every 500 training dialogues on 100 dialogues per domain.
The plots show the success rate, where performance is averaged over domains. The vertical line at 8000 dialogues
indicates the start of cycle 2.
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Figure 8: Success rate for each individual domain, where algorithms are trained in the order easy-to-hard.
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Figure 9: Average return for each individual domain, where algorithms are trained in the order easy-to-hard.
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Figure 10: Success rate for each individual domain, where algorithms are trained in the order hard-to-easy.
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(e) Average return on hotel domain

Figure 11: Average return for each individual domain, where algorithms are trained in the order hard-to-easy.
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(a) Success rate on attraction domain
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(b) Success rate on taxi domain
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(c) Success rate on train domain
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(d) Success rate on restaurant domain
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(e) Success rate on hotel domain

Figure 12: Success rate for each individual domain, where algorithms are trained in the order mixed.
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(b) Average return on taxi domain
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Figure 13: Average return for each individual domain, where algorithms are trained in the order mixed.
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Chapter 7

Learning with an Open Horizon in
Ever-Changing Dialogue Circumstances

This chapter summarizes our work on learning with an open horizon in ever-changing
dialogue circumstances and gives a verbatim copy of our paper (Geishauser et al., 2024):

Christian Geishauser et al. (2024). “Learning With an Open Horizon in Ever-Changing
Dialogue Circumstances”. In: IEEE/ACM Transactions on Audio, Speech, and Language

Processing 32, pp. 2352–2366. DOI: 10.1109/TASLP.2024.3385289

7.1 Summary

The study of continual learning in dialogue has so far focused on the setup where individual
domains are observed sequentially and only for a period of time. Once a new domain is
introduced, the previously observed domain is not present anymore. This configuration
is well-suited for conducting an examination of forward transfer to unseen domains and
forgetting of previously observed domains. Nevertheless, it is arguable whether this defines
a realistic setup for dialogue due to the following reasons. Firstly, while the introduction of a
new domain might lead to a lower occurance for old domains for a period of time, it should
not lead to their entire absence. On the contrary, the new domain should be combined with
previous ones to form multi-domain dialogues. Secondly, user demands for specific domains
change over time, for instance due to seasonal changes, which is not modeled in the current
setup. Lastly, current setups lack the modeling of multiple user behaviors that are inevitably
encountered during the lifetime of a dialogue agent.

In this work, we propose realistic environments for continual RL of dialogue policies
(RECORD), a more realistic continual learning setup for dialogue, which takes into account 1)
multiple user behaviors, 2) multi-domain dialogues, 3) reoccuring domains, and 4) changing
user demands over time. RECORD generalizes the previous setup and is both flexible and
controllable. In order to learn in realistic, ever-changing dialogue environments, we propose
the usage of lifetime return for optimizing the dialogue policy. Lifetime return calculates the
sum of rewards until the end of the agent’s lifetime and thus provides a balance between the
present and the (possibly different) future. This creates a more robust learning of the agent
in changing environments. In order to address the challenge of hyperparameter adaptation
in changing environments, we propose the usage of meta-gradient RL. In this regard, we
are the first to leverage meta-gradient RL for dialogue policy optimization for learning the
hyperparameters of the underlying algorithm.

We conduct extensive experiments with single and multiple user simulators, two algo-
rithms and various continual learning setups. We show that the usage of lifetime return

https://doi.org/10.1109/TASLP.2024.3385289
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facilitates continual learning in every setup. The additional utilization of meta-gradient RL
leads to the best results, showing the benefits of our proposals.

7.2 Personal contributions

The implementation, technical results and writing are my contribution. Co-authors assisted
in writing and proofreading.
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Learning With an Open Horizon in Ever-Changing
Dialogue Circumstances

Christian Geishauser , Carel van Niekerk , Nurul Lubis , Hsien-chin Lin , Michael Heck , Shutong Feng ,
Benjamin Ruppik , Renato Vukovic , and Milica Gašić , Senior Member, IEEE

Abstract—Task-orienteddialogue systems aid users in achieving
their goals for specific tasks, e.g., booking a hotel room or managing
a schedule. The systems experience various changes during their
lifetime such as new tasks emerging or varying user behaviours
and task requests, which requires the ability of continually learning
throughout their lifetime. Current dialogue systems either perform
no continual learning or do it in an unrealistic way that mostly
focuses on avoiding catastrophic forgetting. Unlike current dia-
logue systems, humans learn in such a way that it benefits their
present and future, while adapting their behaviour to current cir-
cumstances. In order to equip dialogue systems with the capability
of learning for the future, we propose the usage of lifetime return
in the reinforcement learning (RL) objective of dialogue policies.
Moreover, we enable dynamic adaptation of hyperparameters of
the underlying RL algorithm used for training the dialogue policy
by employing meta-gradient reinforcement learning. We further-
more propose a more general and challenging continual learn-
ing environment in order to approximate how dialogue systems
can learn in the ever-changing real world. Extensive experiments
demonstrate that lifetime return and meta-gradient RL lead to
more robust and improved results in continuously changing cir-
cumstances. The results warrant further development of dialogue
systems that evolve throughout their lifetime.

Index Terms—Task-oriented dialogue, dialogue policy, deep
reinforcement learning, continual learning.

I. INTRODUCTION

TASK-ORIENTED dialogue systems aid users in achieving
their goal during a conversation. The goal is commonly
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comprised of certain tasks (typically called domains), such as
managing a schedule or planning a journey. Modular dialogue
systems have a tracking component that maintains information
about the dialogue in a dialogue state, and a decision-making
component that models the underlying policy, i.e., the selec-
tion of actions [1], [2], [3], [4]. The array of concepts that a
task-oriented dialogue system can understand and talk about is
defined by an ontology. The ontology is comprised of domains,
e.g. restaurants or hotels, domain-specific slots, e.g. the area or
price, and values that a slot can take, e.g west, east, north, south,
and center for the area slot.

A dialogue system that interacts with the real world faces
unique challenges during its lifetime. The sheer amount of tasks
a dialogue system can potentially handle will result in new tasks
emerging over time. Moreover, a dialogue system might need to
fulfill multiple tasks within a dialogue, such as booking a flight
and finding a hotel, which increases the difficulty of achieving
the user goal. The system will experience a multitude of user
behaviours throughout its lifetime. In addition, user needs will
change over time, for instance due to seasonal changes where
hotels are more frequently demanded in the vacation season.
Continual learning defines the adequate learning platform for
modelling these dialogue challenges as it is concerned with
non-stationary, ever-changing environments [5], [6]. Neverthe-
less, as shown in Fig. 1(a), current setups in continual learning
for dialogue operate with a single type of user behaviour and
rely on the assumption that the dialogue system is exposed to a
single, fixed domain for a period of time. Once another domain is
introduced, the previous domain is never seen again [7], [8], [9].
Moreover, the performance is measured on all domains seen
even though the dialogue system does not encounter previous
domains anymore. Consequently, they mainly focus on the past
instead of considering for the future. This unrealistic setup
focuses mainly on catastrophic forgetting but ignores important
challenges such as encountering multiple user behaviours, user
goals with multiple domains or changing user demands that are
inevitably encountered in lifelong dialogue policy learning. If
dialogue systems are supposed to be deployed for real-world
applications, where they continue learning over time, the simu-
lation of these challenges is essential.

Dialogue policies for continual learning are best optimised
using continual reinforcement learning. The learning objective
is to maximise episodic return, i.e. the cumulative sum of rewards
obtained during an episode, i.e. dialogue in our case [10], [11].
Nevertheless, episodic return, which considers the reward only

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see
https://creativecommons.org/licenses/by-nc-nd/4.0/
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Fig. 1. In previously proposed setups for continual dialogue policy learning, dialogues were conducted with a single type of user behaviour and only with single
domain that does not reoccur once a new domain is introduced. In our proposal RECORD, we simulate multiple user behaviours, multi-domain dialogue goals and
reoccuring domains. We moreover model user demand changes where the likelihood for requested domains varies.

until the end of the dialogue, is biased on the present and
neglects the changes that might happen in the future. In order to
take the future into account, we propose to incorporate lifetime
return [12] into the learning objective of the dialogue policy,
which we refer to as learning with an open horizon. Lifetime
return formally calculates the sum of rewards until the end of
the lifetime and thus provides a balance between the present and
the (possibly different) future.

Moreover, if the environment is changing, the optimal hyper-
parameters of the underlying algorithm can depend on the cur-
rent circumstances faced and are likely to change over time [13],
[14]. In order to address this problem, we propose the usage of
meta-gradient RL [15] to continually learn the hyperparameters
during the lifetime of the dialogue policy. We contribute the
following:1� We propose a sophisticated environment for continual

learning of dialogue policies, called RECORD, including
1) multiple user behaviours, 2) multi-domain dialogues, 3)
reoccuring domains, and 4) changing user demands.� We are the first to use lifetime return for continual dialogue
policy learning and the first to explore the optimisation of
both episodic and lifetime return.� We are the first to use meta-gradient reinforcement learning
for dialogue policy optimisation.

In the age of large language models such as ChatGPT, that
are constantly fine-tuned through RL to continue improving
and keep their knowledge updated, our proposed methods for
adapting to environmental changes are ever more important.

II. BACKGROUND

A. Continual Reinforcement Learning

The formal framework in RL [16] is given by a Markov deci-
sion process (MDP)M = {S,A, r, p, p0, γ}. Here, S denotes
the (continuous) state space,A is the action space, r is the reward
function, p(s′|s, a) is the transition probability that models the
probability of transitioning to state s′ after executing action a in
state s, andp0(s) is the probability of starting in state s.γ denotes
the discount factor. A MDP defines an episodic environment if a
terminal state is reached after finitely many steps (which holds
for dialogue), and non-episodic otherwise. Instead of γ being a

1[Online]. Available: https://gitlab.cs.uni-duesseldorf.de/general/dsml/
record-publichttps://gitlab.cs.uni-duesseldorf.de/general/dsml/record-public.

real-valued number as it is common in the RL definition, [17]
uses transition-based discounting to unify the episodic and non-
episodic return calculation: let (st, at, rt, st+1, . . .)be an infinite
sequence of states, actions, rewards and next states where some
of these states can be terminal (i.e. the episode ends). For a given
time-step t, we define the discounted return

Rt =

∞∑

i=0

⎛
⎝
i−1∏

j=0

γ(st+j , at+j , st+j+1)

⎞
⎠ · rt+i (1)

where γ is a transition-based discount function that we hence-
forth abbreviate with γj := γ(sj , aj , sj+1) if it is clear from the
context. For episodic environments, we can obtain the episodic
return by defining γt+j = 0 if st+j is a terminal state and
otherwise a constant value γt+j = γc between 0 and 1. This
effectively cuts off the influence of the future from time-step
t+ j + 1 onward. The non-episodic case is retrieved from (1) by
defining the transition-based discounting γ as a strictly positive
number for every state. The goal of the agent is to maximise the
discounted return in expectation in every state s, which is called
the state-value V (s). The related Q-function for a state-action
pair (s, a) is the expected discounted return when executing
actiona in state s. Lastly, the policyπ(a | s)defines a probability
distribution over actions for every state s and is used for action
selection.

In contrast to a typical RL use case that operates in a fixed
MDP, in continual RL the agent experiences non-stationary or
changing environments [5], [18]. In its broadest sense, the agent
faces a sequence of Markov decision processes {Mw}∞w=1 with
possibly different transition dynamics, reward functions or even
state or action spaces [18], [19], [20]. Each such MDPMw can
thus model a different circumstance. A typical assumption on the
MDP sequence is local stationarity [21], i.e. the agent collects
episodes using an MDPMw for some period of time before the
next MDP emerges [10], [11], [22].

A common goal of continual learning is to maximise perfor-
mance on all MDPs, which requires prevention of catastrophic
forgetting if previous MDPs are not seen anymore [11], [23].
The evaluation of the agent is performed on all MDPs, no
matter whether the MDPs occur again. As mentioned in [18],
it is questionable why an agent should retain performance on
tasks that are never observed again. Moreover, this requires
separate evaluation phases during training that are not always
available [18]. Thus, an alternative form of performance measure
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that we also employ in this work is given through the cumulative
performance over the agent’s lifetime [21], [24] and the average
performance within a time-window [25].

B. Actor-Critic RL

RL methods can be distinguished into value-based and policy-
based methods [16]. Policy-based methods parameterise the pol-
icyπθ directly using parameters θ, whereas value-based methods
learn a value-function. Actor-critic methods are a combination
of the two methods and learn both an actor πθ and a critic Vψ(s)
(or Qψ(s, a)). The critic approximates the state-function V (s)
by minimising the mean-squared error between its prediction
and a target. The target could be the discounted return as in (1),
the vtrace-target [26], or the one-step look ahead r + Vψ(s

′) for
instance. Let the advantage function be defined as

A(s, a) = Q(s, a)− V (s) = Eπ[r + V (s′)− V (s)], (2)

where s′ denotes the state reached after executing action a in
state s. We emphasise here that the advantage can be expressed
in terms of the value-function V . Policy updates are based on the
policy gradient theorem [16] and update the policy parameters
in the direction

Eπ[A(s, a)∇θ log πθ(a | s)]. (3)

The expectation with respect to π in (3) means that we require
generating episodes using π to approximate the expectation,
which is called on-policy. In contrast, off-policy methods build
an approximation using episodes generated by a different policy
μ, often called behaviour policy, which can also be a previous
version of π. Off-policy methods can hence reuse generated
data multiple times, which makes them generally more sample-
efficient in comparison to on-policy algorithms. In general, for
actor-critic methods the advantage function guides the policy
optimisation and judges which actions should be reinforced and
which should be suppressed. Instead of the advantage function,
one could also use the return Rt or Q-function [27].

C. Meta-Gradient Reinforcement Learning

Meta-gradient RL is a general framework for continually
adapting differentiable hyperparameters η of the RL algo-
rithm [15], [28]. Consider a loss function Linner(θ, η) that de-
pends on model parameters θ to be learned and differentiable
hyperparameters η (e.g. the learning rate or weights for regu-
larisation losses). The differentiable hyperparameters η that are
optimised during meta-gradient RL are called metaparameters
and are a subset of the hyperparameters.

In every minimisation step for Linner, which is called an
inner loop update, we optimise parameters θt by updating ac-
cording to θt+1(η) = θt −∇θtLinner(θt, η). We note that the
acquired parameters θt+1 have a dependence on η. After m
inner loop updates with fixed η, we obtain parameters θt+n(η).
For a specified outer loss function Louter, meta-gradient RL
then performs the outer loop update (or meta update) by η′ =
η −∇ηLouter(θt+n(η)) and the process repeats.

D. Task-Oriented Dialogue Policy

We view dialogue as a sequence of turns between a user and
a dialogue system. The sequential nature of dialogue motivates
the optimisation through RL, where the corresponding MDP
properties are explained as follows. In every turn of the con-
versation, the user produces a user action (or utterance on text
level), which is composed of a list of atomic actions. Examples
for atomic actions are given by Restaurant-inform-price-cheap
or Hotel-request-address-?, which means that the user informs
the system that the restaurant should be cheap or that the user
requires the address of a hotel, respectively. The dialogue state is
commonly based on the hidden information state of the dialogue
system [29]. This hidden information state consists of the current
user goal, the user action, and the dialogue history. Here, the
goal is composed of a list of domains and each domain comes
with a list of constraints, e.g. the hotel has to be cheap and in
the centre and the restaurant has to serve Italian food. Since
the current user goal already summarises the history to some
extent, the dialogue history information in the state typically
only includes the last chosen dialogue system action [30], [31].
In addition, the state contains information about the database
results, for instance the number of entities that are available
given the current user goal. We note that the dialogue state
can moreover incorporate uncertainty about the predicted user
goal or user act, which is then referred to as dialogue belief
state [32].

Given the state, the dialogue policy selects a system action,
which is given by a list of atomic actions. For instance, the
atomic actions Restaurant-inform-address or Train-book mean
that the system informs the address of a restaurant or books a
train for the user. The large number of atomic actions and their
combinations produce a large action space for dialogue policies
that moreover grows in continual learning [9], [33]. The dialogue
ends if the user regards it as completed or a maximum number of
turns Tmax has been reached (where typically Tmax = 40 [34]).
The reward function captures the two important objectives of a
task-oriented dialogue system: dialogue success and efficiency.
To encourage efficiency, the policy receives a small negative
reward (typically−1) in every dialogue turn. Once the dialogue
is finished, the policy obtains a large positive or negative reward
(in comparison to the efficiency reward) depending on dialogue
success or failure, encouraging the policy to first favor success
optimisation over efficiency. The rewards for dialogue success
and failure are typically set to 2 · Tmax and −Tmax, respectively,
such that the highest and lowest reachable returns will be roughly
2 · Tmax and −Tmax + Tmax · (−1) = −2 · Tmax [34], [35].

Lastly, the starting state probability and transition prob-
abilities are governed by the user behaviour, which determines
how the user reacts to the system, and the user goal distribution.
For instance, the likelihood of starting a conversation with
restaurant or hotel related information depends on the user goal
distribution and user behaviour. Moreover, regarding the user
behaviour, some users tend to provide more information than
others in a single turn, or are less patient and more quickly jump
to the next domains. An example of user action, state, system
action and reward is provided in Appendix Fig. 9.
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III. LEARNING WITH OPEN HORIZON IN EVER-CHANGING

ENVIRONMENTS

A. RECORD: Realistic Environments for Continual RL of
Dialogue Policies

In task-oriented dialogue, the system aids users in achieving
their goals, where the goal is composed of a list of domains and
each domain comes with a list of constraints. The system learns
from a sequence of dialogues during its lifetime, where each
dialogue comes with a certain user goal, which thus gives rise
to a sequence of goals. Previous works in continual learning for
dialogue focus on goal sequences which can be subdivided into
smaller goal sequences that only contain single-domain goals
with a fixed domain. The fixed domain changes once another
domain is introduced.

In the following, we strive for a more challenging and general
dialogue learning scenario that is both flexible and controllable,
where 1) domains can reoccur anytime in goals of a sequence,
2) multiple domains can be present in goals of a sequence, 3) the
probability of a domain occurring in a goal varies throughout the
lifetime, thereby modelling user demand changes, and 4) differ-
ent user behaviours are encountered for different dialogues. The
difference between our proposed continual learning setup and
the previously proposed setup is shown in Fig. 1.

The dialogue agent faces a sequence of MDPs in continual
RL, where we assume local stationarity [21], i.e. the agent
is faced with a fixed MDP for a certain amount of dialogues
until a new MDP is created. We model MDP changes with a
timeline, which specifies the number of dialogues that should
be conducted before a new MDP is introduced. A change in
MDP can be caused by two different events:

1) a new domain is introduced to the system: the emerging
MDP has an expanded state and action space compared to
before since the agent needs to understand new concepts
for the new domain (e.g. if the hotel has wifi) as well
as select new actions (e.g. inform the address of the
hotel). Moreover, the transition probabilities change since
the probability for obtaining states that consider the new
domain is positive.

2) The user request probability for specific domains, i.e. the
user demand, changes: the emerging MDP then has a
different transition probability as the likelihood of encoun-
tering a specific domain has changed.

We now explain how user goals are constructed in our frame-
work for an MDP M during the agent’s lifetime, see also
Algorithm 1. Firstly, we check whether the MDP has emerged
as a consequence of 1) a new introduced domain dnew or 2) a
user demand change. In the first case (event 1), we determine
if the new domain should be included in the user goal by
sampling from a Bernoulli distribution Bernoulli(pnew), where
pnew models the probability that dnew is part of the goal. If
dnew should be part of the goal, we initialise the goal with dnew

(Algorithm 1, line 5), and otherwise keep the goal as an empty
list. If pnew < 1, there exists a chance that the newly introduced
domain is not included in the goal. Consequently, a previously
introduced domain is required to be in the goal, resulting in
the reoccurance of the domain (Algorithm 1, lines 9-11). The

Algorithm 1: Construct User Goal.
Require: dnew, pnew, pnum, σ

• dnew: newly introduced domain or None
• pnew: probability that dnew is in the goal
• pnum: distribution for how many domains should be in
the user goal
• σ: decides on user demand deviation

1: goal← []
2: if dnewthen is not None � domain dnew was introduced
3: use_dnew ∼ Bernoulli(pnew)
4: if use_dnew then
5: goal← [dnew]
6: if MDP changed then
7: zi ∼ N (0, σ) for all introduced domains di
8: num_domains ∼ pnum

9: while len(goal) �= num_domains do
10: dj ∼ pdemand = softmax(zi | zi �= dnew, zi �∈ goal)
11: goal.append(dj)
12: return goal

higher we choose the probability pnew of a new domain being
part of the goal, the more frequently the policy has to adapt
to a new domain. A domain is considered new until the MDP
changes again.

Secondly, regardless whether the MDP emerged as a con-
sequence of event 1) or 2), we determine the number n of
domains that the user goal should consist of by sampling from a
pre-defined distribution pnum overN. If pnum(1) < 1, there exists
a chance that the goal comprises more than a single domain,
resulting in multiple domains per goal. As goals with many
domains are more difficult to solve, specifying a high probability
for larger n in pnum allows us to model the difficulty of the
environment. To obtain n domains for the user goal (which is so
far either empty or only consists of dnew), we continue sampling
from a distribution pdemand over introduced domains. We note
that even in the case pnew = 1, a previously introduced domain
dprev can reoccur in multi-domain dialogues if pnum(1) < 1 and
pdemand(dprev) > 0.

While the distributions pnew and pnum are pre-defined and
fixed in our setup, we use the distribution pdemand in order to
model changing user demands over time. The distribution
pdemand is altered every time the MDP change is caused by a
change in user demands according to our timeline (i.e. event 2).
We model different values for pdemand as follows. The initial
choice for pdemand is such that all introduced domains are
equally likely to occur in a goal as we can not argue a priori
why one domain will be more frequently demanded than an-
other. Nevertheless, some domains might be on average more
frequently demanded by users than others for some period of
time (for instance due to seasonal changes). For every introduced
domain di, we model the demand for di by a noise variable Zi
with distributionN (0, σ), whereσ is the variability of deviation.
Whenever the MDP changes, we sample fromN (0, σ) to obtain
values zi. The demand probability pdemand over introduced
domains is then given by softmax(zi) and kept fixed until another
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MDP change occurs. This has the intuitive interpretation that
demand for di is lower for zi < 0 and higher for zi > 0 while
on average we obtain the uniform distribution (i.e. domains are
equally likely) as the mean is set to 0. Finally, once the user goal
is constructed, we uniformly sample a user from our given set
of possible users that interacts with the dialogue agent, thereby
modelling different user behaviours.

We note that setting pnew = pnum(1) = 1 and allowing only
the introduction of new domains, we retain the previous setup in
continual dialogue learning (see Fig. 1(a)). Due to its generality,
our framework can be also used to study related problems
such as how to deal with composite goals [36] or multiple
user behaviours. We abbreviate our endeavour towards realistic
environments for continual reinforcement learning of dialogue
policies as RECORD. We emphasise here that by realistic
environment, we do not necessarily mean we simulate exactly
what may be happening in the real world, but aim to simulate
the most important challenges (see Section I) that need to be
overcome by a continually learning agent.

B. Optimising for Lifetime

Continual RL for episodic tasks such as dialogue typically
aims at maximising the episodic return, i.e. the cumulative sum
of rewards until the end of the episode (or dialogue in our
case) [10], [11]. In a changing environment, this produces biased
updates that are overly focused on the current experience distri-
bution rather than the expected future distribution [18]. Never-
theless, lifelong environment changes as modelled in RECORD
require the model to take these future variations into account.
To deal with this additional challenge, we propose the usage of
lifetime return in addition to episodic return for dialogue policy
optimisation.

For the episodic return, the transition-based discounting be-
comes 0 in a terminal state sterminal (for a time-step tterminal). The
infinite sum in (1) thus becomes a finite sum

Repi
t =

tterminal∑

i=0

γic · rt+i (4)

which only looks ahead until the end of the episode for a fixed
discount factor γc.

In the non-episodic case, i.e. without terminal states, the
discounting is a strictly positive constant γc > 0 for every state
and we can seek to optimise the infinite horizon return in every
time point t [18]. In contrast toRepi

t , the lifetime return takes into
account all future states until the end of the agent’s lifetime. In
order to leverage lifetime return for our episodic environment,
we artificially cast it to be non-episodic by defining the transition
based discount factor to be γc > 0 for terminal states as well.
We abbreviate the resulting lifetime return in time step t by

Rlife
t =

∞∑

i=0

γic · rt+i (5)

and refer to the optimisation of it as learning with an open hori-
zon. As our agent faces a never-ending life where circumstances
change over time, the lifetime objective formally takes these

Algorithm 2: Continual Policy Learning with Open Hori-
zon.

Require: policy πθ, episodic critic V epi
ψ , lifetime critic V life

ψ ,
meta-frequency m, meta parameters η,
episodes_until_update, actor-critic algorithm A.
1: num_updates← 0
2: num_episodes← 0
3: while lifetime not ended do
4: Create episode using πθ and save in buffer
5: num_episodes+ = 1
6: if num_episodes mod episodes_until_update = 0 then
7: Update V epi

ψ towards expected episodic return
8: Update V life

ψ towards expected lifetime return
9: Update πθ to minimize episodic and lifetime return

using critics V epi
ψ and V life

ψ

10: num_updates + = 1
11: if num_updates mod m = 0 then
12: Update meta-parameters η for lifetime return

changes into account, whereas episodic return only considers
the present distribution.

To optimise for both the present and future, we thus propose
to maximise the returns Repi

t and Rlife
t . In practice when we

apply it to actor-critic RL, we learn two critics V epi
ψ and V life

ψ

that approximate the expected episodic return Repi
t and lifetime

returnRlife
t , respectively. For the sake of clarity, in the following

we use the standard policy gradient as given in (3), but the
additions can be applied to any actor-critic algorithm. If Aepi

ψ

and Alife
ψ denote the advantage estimates for V epi

ψ and V life
ψ , we

update π in the direction of

Eπ[(Aepi
ψ +Alife

ψ )∇θ log πθ(a|s)], (6)

which will reinforce or suppress actions based on both episodic
and lifetime advantage.

C. Hyperparameter Learning for Lifetime

Continual learning algorithms often have additional loss terms
that affect learning, such as a policy entropy loss

∑
a πθ(a|s) ·

log πθ(a|s) to enhance exploration or regularisation losses (e.g.
KL-divergence KL[μ||π] with the past policy μ) to prevent
catastrophic forgetting [10]. These loss terms are weighted by
hyperparameters to balance their impact with the actual objective
of maximising return. The hyperparameters can depend on the
current circumstances faced, which makes it difficult to set them
optimally beforehand. To mitigate that problem, we propose
the usage of meta-gradient RL for learning hyperparameters
of the underlying dialogue policy RL algorithm. We optimise
hyperparameters such that the lifetime return is maximised (as
an alternative, one could also optimise hyperparameters for
episodic and lifetime return). If we meta-learn the weight for a
regularisation loss to imitate past behaviour, this has the intuitive
interpretation that we only imitate past behaviour to the extent
that it benefits future lifetime performance. Similarly for the
entropy loss, we only require high entropy if the exploration is
needed for obtaining a better lifetime performance.



GEISHAUSER et al.: LEARNING WITH AN OPEN HORIZON IN EVER-CHANGING DIALOGUE CIRCUMSTANCES 2357

In practice, we perform meta-gradient RL by updating the
policy m times using (6) with fixed η and then update the meta-
parameters in the direction of

Eπ[Alife
ψ ∇η log πη(a | s)]. (7)

We depict a high-level pseudo code of the overall optimisation
in Algorithm 2.

IV. EXPERIMENTAL SETUP

In this section our aim is to explore how the addition of lifetime
return and meta-gradient RL aids learning in ever-changing
environments given by our proposed RECORD environment.

A. RECORD Environment

We conduct the experiments using the recently introduced
ConvLab-3 framework [34], which provides a rule-based sim-
ulator [37] as well as the transformer-based user simulator
TUS [38] for the MultiWOZ environment [39]. The rule-based
simulator can have either high or low initiative, which decides
on how many actions the user simulator takes in a turn. We run
experiments with three user setups: 1) single rule-based user
of high initiative as it is the default in ConvLab-3, 2) single
TUS, and 3) multiple user behaviours: the two rule-based user
simulators with high and low initiative and TUS. We introduce 5
domains of MultiWOZ in the order restaurant, attraction, hotel,
taxi and train. We omit the domains hospital and police as in [9]
since they are considered trivial. The user and dialogue policy
use semantic actions for interaction. All algorithms were run on
5 different seeds and the results are averaged.

Our continual learning setup is constructed as follows. We
set pnew = 0.8, which means that on average 80% of goals
contain the new domain. The high number will require the
policies to adapt as fast as possible to the new domain. We
use pnum(1) = 0.3, pnum(2) = 0.5, pnum(3) = 0.2, i.e. on aver-
age 50% of the dialogue goals consist of two domains and 20%
of three domains, which produces a mix between simple and
complex goals. In the first part of its lifetime, the dialogue
agent only faces MDP changes caused by the introduction of
new domains. We introduce a new domain after 2000, 5000,
9000 and 11000 dialogues, which gives the policy time to adapt
to the new domain before yet another domain is introduced.
We use a value of σ = 0 during that stage, which means that
pdemand is a uniform distribution. The domains are introduced in
a fixed domain order as it has been shown by [9] that, while the
learning might be quicker, the final performance is independent
of the domain order chosen. In the second phase of its lifetime,
starting after 15000 dialogues, a new MDP emerges every 1000
dialogues due to user demand changes, where we set σ = 0.5.
The lifetime ends once 25000 dialogues are reached. The high
number of 25000 dialogues in total allows us to observe a variety
of user demands.

B. Model and Algorithms

To test the benefits of lifetime and meta-gradient RL, we
use PPO [40] and CLEAR [10] as base algorithms. PPO is an

TABLE I
TWO ALGORITHMS WHICH WE EQUIP WITH LIFETIME RETURN OBJECTIVE

AND META-GRADIENT RL

on-policy actor-critic algorithm that has been widely adopted in
the RL literature as well as real applications (e.g. training In-
structGPT [41]). While not directly built for continual learning,
it can adapt to changes and serves as a strong baseline algo-
rithm. In contrast, CLEAR builds upon the off-policy algorithm
V-trace [26], which increases its sample efficiency. CLEAR is
specifically built for continual learning and has an additional
regularisation loss that prevents forgetting by regularising the
policy towards past predictions. In addition, both PPO and
CLEAR have an entropy loss that facilitates exploration. When
using meta-gradient RL, we meta-learn the entropy weight βent

for both PPO and CLEAR and additionally the regularisation
weight βreg for CLEAR. A summary is shown in Table I and
in-depth descriptions can be found in Appendix. We use four
different setups:

1) epi: optimise for episodic return, i.e. use Aepi
ψ .

2) life: optimise for lifetime return, i.e. use Alife
ψ .

3) epi+life: optimise for episodic and lifetime return, i.e. use
Aepi
ψ +Alife

ψ .

4) epi+life+meta: use Aepi
ψ +Alife

ψ and meta-learn hyperpa-
rameters.

Regarding the model architecture, we employ the state-of-
the-art model for continual dialogue policy learning called
DDPT [9]. DDPT has been shown to have strong forward transfer
capabilities to new domains, prevents forgetting, and can adapt
to new domains without architectural changes. We note that
optimising DDPT with episodic return (setup 1) coincides with
the method used in [9]. We chose DDPT, which is specifi-
cally built for continual dialogue policy learning, instead of
the AdapterCL architecture proposed in [8] for the following
reasons. AdapterCL was proposed in the continual learning setup
where only a single domain occurs in dialogues for a period of
time. Each new domain leads to random initialisation of a corre-
sponding adapter and freezing of all other adapters. This mecha-
nism focuses on preventing forgetting but impedes forward and
backward transfer to other domains that we regard as essential in
continual learning. Moreover, the AdapterCL architecture grows
in size with the introduction of new domains and it is unclear how
a variable number of adapters can be used in a single dialogue
turn, which is required in multi-domain dialogues (e.g. if the
system wants to talk about hotels and restaurants in one turn).
However, since our proposal is of algorithmic nature, we believe
that our method leads to improvements regardless of the specific
architecture chosen.

C. Performance Measure

The objective of the dialogue policy is to provide information
to the user as well as book entities if required. An entity can
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Fig. 2. Average lifetime return for different simulator setups and algorithms. We equipped the algorithms CLEAR and PPO with lifetime return optimisation
(epi+life) as well as meta-learning hyperparameters (epi+life+meta). For comparison, we add an ablated version that uses lifetime return without episodic return
(life). The results show the mean over 5 seeds with 95% confidence intervals.

be for instance a hotel, restaurant, train, or taxi. A dialogue is
considered successful if the user has 1) obtained all information
required given the correct constraints and, 2) the correct entities
are booked (if necessary). The constraints of the user can be for
instance given by [Restaurant: [area: north, food-type: Italian,
day: Saturday]]. The general performance of a dialogue policy
is measured by success rate and return. We do not report other
measurements such as booking rate or complete rate since they
do not fully evaluate whether the user goal was achieved. The
maximum number of turns is set to Tmax = 40 [34]. The reward
in every turn is given by −1 to maximise dialogue efficiency,
and a final reward of 2 · Tmax = 80 or −Tmax = −40 is given in
case of dialogue success or failure, respectively. Our main mea-
surement will be lifetime performance, i.e. the averaged sum of
return or success over the lifetime, as we want to evaluate which
algorithm performs best over the entire lifetime. We use mean
with 95% confidence intervals when averaging measures across
seeds [42]. In addition, we also showcase the moving average
to analyse how algorithms perform locally during changes of
the environment as done in [25]. The time-window we choose
is 500 dialogues.

V. EXPERIMENT ANALYSIS

A. Algorithm Performance

Lifetime performance: Fig. 2 depicts the results for the single
and multiple user behaviour setup. We can see that optimising
for the present and future (epi+life) compares favourably to the
baseline, achieving better performance in all settings. The sub-
stitution of episodic return by lifetime return (life) does improve
performance in four out of six setups, only performing similarly
to the baseline for PPO and the rule-based simulator and CLEAR
and the transformer-based simulator. In addition, the combina-
tion of episodic return and lifetime return (epi+life) performs
equally well or better than only using lifetime return, except for
PPO and the transformer-based simulator. This shows that the
introduction of lifetime return optimisation makes learning more
robust in changing environments as the infinite horizon is taken
into account. Moreover, we can observe that the combination
of returns and meta-learning (epi+life+meta) leads to the best
performance for both algorithms and all three simulation setups.

Fig. 3. Moving average (and standard error) with time-window of 500 dia-
logues while interacting with multiple simulators and CLEAR as base algorithm.
New domains will be introduced into the agent’s life at the vertical lines. After
15000 dialogues, the user demand distribution pdemand changes every 1000
dialogues.

This emphasises the importance of dynamic adjustments during
lifelong learning. The results together show the substantial ben-
efit of our proposals in a challenging continual dialogue policy
learning scenario. Lastly, CLEAR generally performs better than
PPO since it is specifically built for continual learning. We will
therefore focus on CLEAR for the remaining experiments.

Local performance: Lifetime performance gives us a general
measure of the overall performance. To obtain better insights into
the local learning process, we depict moving average success rate
in Fig. 3. The vertical lines with a domain next to it indicate when
this domain is introduced. We can observe a drop in performance
for all algorithms once a new domain is introduced, where the
drop is less severe for the meta-learned algorithm due to the
dynamic adaptations. The models do not experience a drop when
the taxi domain is introduced as DDPT has strong zero-shot
capabilities for this domain [9]. All algorithms adapt to the
changed environment as can be seen from the rising trends.
The user demands start changing after 15000 dialogues and
we can observe a stronger upwards trend for the meta-learned
algorithm until the end of the lifetime. The algorithms using



GEISHAUSER et al.: LEARNING WITH AN OPEN HORIZON IN EVER-CHANGING DIALOGUE CIRCUMSTANCES 2359

Fig. 4. Moving average success (and standard error) with time-window of
500 dialogues while interacting with the high initiative rule-based simulator and
CLEAR as base algorithm. The dialogue agents face changing user demands
with σ = 0.5 every 1000 dialogues and all domains are introduced from the
beginning.

lifetime return but no meta-learning perform similarly to the
baseline at the beginning when only restaurant is present, since
this defines a stationary environment. Once the MDP changes
(starting with the introduction of attraction), lifetime return
maximisation shows its benefit for changing environments. We
can also observe that the local performance is the highest for
restaurant and lower once more domains are introduced. One
reason for that is the fact that once a second domain is introduced,
the agent additionally faces multi-domain dialogues that are
more difficult to fulfill. Our proposed RECORD framework
is the only simulation environment that takes multi-domain
dialogues during continual learning into account.

User demand changes: Fig. 3 shows that incorporating life-
time objective and meta-learning outperforms the baseline dur-
ing user demand changes. However, models that perform better
until 15000 conducted dialogues have a head start when being
exposed to changing user demands. In order to strictly analyse
how well these models deal with changing user demands, we
conducted additional experiments where all domains are already
introduced from the beginning and only the user demands change
every 1000 dialogues with σ = 0.5 as before and pnum(1) =
0.5, pnum(2) = 0.3, pnum(3) = 0.2 to obtain a slightly easier
setup. We chose an easier setup in terms of the probability
distribution pnum because the introduction of all domains from
the beginning in combination with changing demands is very
challenging. Fig. 4 depicts the moving average success. We can
see that the usage of lifetime return outperforms the baseline
by taking future changes into account. In addition, the usage of
lifetime return and meta-learning produces the best results due
to additional adaptation during the learning process. This shows
that taking future changes into account is beneficial when being
exposed to changing user demands even when all models start
from the same initial performance. We show more experimental
results with higher values of σ in Appendix.

The results overall show that lifetime return is beneficial for
the continual learning environment of dialogue, while requiring

Fig. 5. Meta-learned parameters βent and βreg during the lifetime of the meta-
learned agent CLEAR with epi+life+meta.

only minimal algorithmic changes, which motivates the broader
usage of lifetime return in general. Moreover, the substantial per-
formance improvements when meta-learning hyperparameters
emphasise the strength of self-adaptive algorithms in continual
dialogue policy learning and encourage future applications.

B. How Do Meta-Parameters Adapt?

In the following we want to analyse how the meta-learned en-
tropy weight βent and regularisation weight βreg for the CLEAR
policy evolve during the learning process. Fig. 5 shows that
both parameters are decreasing over the course of learning.
The entropy weight decreases as the requirement to explore
decreases over the course of the lifetime. The regularisation
weight decreases almost linearly as the agent collects more
experience during its lifetime and starts stabilising at the end.
This shows that regularisation on past behaviour is beneficial for
learning and decreases as more knowledge has been collected.
This is reasonable as domains reoccur and past knowledge hence
benefits the future. The adaptability is critical for the decision
of how much prevention of forgetting is necessary, depending
on the future circumstances.

We note that while it might be possible to characterise the
change in hyperparameters in retrospect, for example with an
exponential function as in Fig. 5, it is not clear whether this
function is also helpful in prospect. Namely, as we have no
knowledge of future circumstances, it is not clear that this
function would be applicable to any other setup in the future.
This emphasizes the flexibility and strength of meta-learning
albeit for a higher computational cost.

C. Human Trial

To verify that our proposal of lifetime return and meta-
learning for continual dialogue policy learning outperforms the
baseline also in interaction with humans, we ran a human trial
using Amazon Mechanical Turk [43], where human volunteers
directly interacted with the systems. We used CLEAR as base
algorithm and compared the baseline (epi) with our advance-
ments (epi+life) and (epi+life+meta), which were trained in the
multiple user behaviour setup. After each conducted dialogue
the user was asked to rate the performance of the systems with
a number between 1 and 5. We collected 75 dialogues for each
system. The results are given in Table II, showing clearly that
our models outperform the baseline.



2360 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 32, 2024

Fig. 6. Average lifetime return for different RECORD ablations. We use the previous setup in continual learning where single domain dialogues are considered
and only the newest introduced domain is present until another domain change occurs. We then add either reoccuring domains, multiple user behaviours, or
multi-domain dialogues to this setup. The setups that use only one simulator use the high initiative rule-based simulator.

TABLE II
HUMAN TRIAL RESULTS FOR THE BASELINE (EPI) AND OUR PROPOSED

METHODS (EPI+LIFE) AND (EPI+LIFE+META) WITH CLEAR AS BASE

ALGORITHM

D. RECORD Ablations

RECORD allows us to model reoccuring domains, multi-
ple user behaviours, multi-domain dialogues, and user demand
changes. In this section, we want to analyse the scenarios that
emerge through adding one of the above proposals to the pre-
vious setup in continual learning, where the newly introduced
domain is the only domain in the user goal until another domain
change occurs [8], [9]. We create three scenarios by adding one
of the following to the previous setup:� reocurring domains realised using the rule-based simula-

tor with high initiative and pnew = 0.8, pnum(1) = 1.0.� multiple user behaviours realised with three user simula-
tors and pnew = pnum(1) = 1.0.� multi-domain dialogues realised using the rule-based
simulator with high initiative and pnew = 1.0, pnum(1) =
0.3, pnum(2) = 0.5, pnum(3) = 0.2.

We omit user demand changes in this experiment as this is
already covered in Section V-A. The results are shown in Fig. 6,
confirming our previous results that lifetime return aids in learn-
ing and additional meta-learning leads to the best performance.
The modelling of reoccuring domains in isolation leads to the
highest returns in the three setups since single domain dialogues
with the rule-based simulator is the easiest setup, where the
reoccurance of domains result in a higher proportion of already
existing domains in the user goal that are potentially easier to
solve for the model. The modelling of multi-domain dialogues
leads to the lowest returns out of the three scenarios due to the
increased difficulty of achieving multiple domain goals within
a single dialogue.

VI. RELATED WORK

A. Continual Learning Setup in Dialogue

In terms of simulating reoccuring tasks, our framework shows
similarities with other works in supervised continual learn-
ing [24], [44]. However, these frameworks do not explicitly
model circumstances that are specific to dialogue, such as
how to combine single tasks to form multi-domain dialogues
or changing user demands over time. [20] modelled changing
user demands by sine curves of different amplitude and fre-
quency. In contrast, we leverage normal distributions based on
an uninformed prior over tasks, which gives more diverse and
non-periodic changes.

Previous setups in continual learning for task-oriented dia-
logue have focused on learning a set of domains in a sequential
order, where each domain is only observed for a certain period of
time [7], [8], [9], [45]. The goal then is to maximise performance
on all seen domains. While suitable for studying the effects
of catastrophic forgetting, this setup constitutes an unrealistic
scenario for modelling how a dialogue system would learn in
the actual world: it is unlikely that a dialogue system provides
aid for domains only for a certain time period until it starts
learning a new domain. Even if that is true, it is contradictory
that the dialogue system should retain performance on previous
domains if these are never seen again. Moreover, the setup does
not model the possibility of multi-domain dialogues [39] that are
required in the real world, e.g. finding a flight, train and hotel for
a journey in a single conversation. There has been no learning
environment that simulates the challenges of a dialogue system
in a real-world continual learning scenario.

B. Lifetime Return

RL algorithms in episodic environments aim to maximise
the episodic return, i.e. the discounted sum of rewards until
the end of the episode. Lifetime return looks further into the
future until the end of the lifetime, taking an infinite future
horizon into account [12]. [46] meta-learn an intrinsic reward
function with the goal of maximising lifetime return of the RL
agent using multiple lifetimes in parallel. Lifetime return has
been previously only used for proof-of-concept environments
with less than 10 actions to showcase its use in training an
intrinsic reward function but not for more complex tasks such as
multi-domain dialogue [12], [46]. We are the first to use lifetime
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return for dialogue, which defines an environment with large
state and action spaces [33]. Moreover, we are the first to explore
the optimisation of both episodic and lifetime return.

C. Meta-Gradient RL

Meta-gradient RL has been used for meta-learning various
components such as hyperparameters [13], [15], [28] or update
targets [15]. To the best of our knowledge, our work is the
first to apply it in the domain of dialogue policy learning. [13]
study meta-gradient reinforcement learning in a non-stationary
grid-world, where the grid-world exhibits a small state and action
space. The design of non-stationarity is targeted at showing the
merits of meta-gradient reinforcement learning, where the opti-
mal policy is required to be re-learned after every MDP change.
In contrast, we apply meta-gradient reinforcement learning to
continual learning, where previously learned tasks are supposed
to facilitate learning of a new task and re-learning of a task
would imply catastrophic forgetting that is prohibitive in contin-
ual learning. Moreover, we apply meta-gradient reinforcement
learning to a setup with much larger state and action spaces as
well as optimise the meta-parameters towards lifetime return
maximisation.

VII. DISCUSSION

Our RECORD framework strives for a more realistic ap-
proximation of how a dialogue system could interact in a real
world. Modelling the circumstances in the real world exactly
is a difficult endeavour due to its multitude of unpredictable
situations such as crises, pandemics, sudden novel inventions,
etc. We thus emphasize that our goal is not to simulate exactly
what may be happening in the real world, but aim to abstract
and simulate the (most important) challenges that need to be
overcome by a continually learning agent. In this respect, we
consider RECORD as a strong foundation to build upon. An in-
teresting extension of RECORD is to model the fact that reward
might not be always accessible in every dialogue, opening up
research in continual reward learning for dialogue.

Regarding our experimental setup, our study on continual RL
in ever-changing dialogue circumstances was conducted with
five domains of the MultiWOZ environment [39]. We chose
this environment due to its unique combination of multi-domain
dialogues, multiple user simulators, a database, and a success
evaluation component required for our research [34]. In addition,
the relatively small number of domains in MultiWOZ allowed
us to conduct a large variety of scenarios with many different
RECORD settings. Nevertheless, considering the extensive ar-
ray of potential domains in dialogue, the logical progression
involves expanding our investigation to encompass a broader
spectrum of domains. To this end, the domains of MultiWOZ
can be extended by using additional domains of other datasets
such as SGD [47]. Only recently, a database, success eval-
uator as well as a rule-based user simulator has been built
for the SGD dataset [48]. We regard a large scale continual
learning study using our RECORD framework as an exciting
next step.

VIII. CONCLUSION

In this work, we address the problem of dialogue systems
learning in a world that is continuously changing. To provide
an experimental environment that models the most important
challenges during the lifetime of a dialogue policy, we pro-
posed a flexible and controllable learning environment called
RECORD that models multiple user behaviours, multi-domain
dialogues, introduction of new domains and changing user
demands. Instead of solely optimising the policy for episodic
return, which only addresses the present, we proposed the usage
of lifetime return as an additional objective for taking the future
into account, i.e. learning with an open horizon. Additionally, we
employed meta-gradient RL to enable dynamic hyperparameter
adaptation for continual dialogue policy learning. Extensive
experiments with single and multiple user simulators and two
algorithms show that our proposed algorithmic advancements
of lifetime return and meta-gradient RL results in more robust
continual RL in a setup that models important challenges in
real world scenarios. It moreover encourages widespread usage
of lifetime return and meta-gradient RL for continual learning
scenarios. For future work, we investigate different learning
strategies to improve performance in our RECORD framework
such as hierarchical lifetime learning and episodic memory.

APPENDIX

OPEN HORIZON CLEAR

CLEAR [10] is a continual RL algorithm that builds upon
the off-policy actor-critic algorithm V-trace [26]. It hence learns
both a policy πθ parameterised with θ and a critic Vψ param-
eterised with ψ, where the critic approximates the state-value
function for π. Given a trajectory τ = (st, at, rt)

t=k+n
t=k gener-

ated by a behaviour policy μ, the n-steps V-trace target vk and
advantage A is defined by

vk = Vψ(sk) +

k+n−1∑

t=k

⎛
⎝

t∏

j=k

γk+j

⎞
⎠
(
t−1∏

i=k

ci

)
δt (8)

A(sk, ak) = rk + γkvk+1 − Vψ(sk), (9)

where we used transition-based discounting for unifying the
episodic and non-episodic case as introduced in (1). Here, δt =
ρt(rt + γtVψ(st+1)− Vψ(st)) is a temporal difference term.

Moreover, ρt = min(ρ, π(at|st)μ(at|st) ) and ct = min(c, π(at|st)μ(at|st) ) are
truncated importance sampling weights, where ρ and c are
hyperparameters.

To view the environment as both episodic and non-episodic
(Section III-B), we require a critic V epi

ψ that estimates episodic

return and a critic V life
ψ that estimates the lifetime return. Let vepi

k

andAepi denote vk andA in (8) and 9 with γk+j = 0 if sk+j is a
terminal state, i.e. the episodic case. Let vlife

k andAlife denote vk
andA in (8) and 9 with γk+j = γc > 0 for all states sk+j , i.e. the
non-episodic case. Moreover, let V epi

old (sk) be the prediction of
V epi
ψ at the time of creating the state sk. We define the following

losses:

Lepi
v = (V epi

ψ (sk)− vepi
k )2 (10)
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TABLE III
DIFFERENT LOSSES OF OPEN HORIZON CLEAR AND WHETHER THEY USE

RECENT OR OLD EXPERIENCE FROM THE BUFFER

Llife
v = (V life

ψ (sk)− vlife
k )2 (11)

Lreg
v = (V epi

ψ (sk)− V epi
old (sk))

2 (12)

The episodic critic V epi
ψ is optimised by minimising the sum

Lepi
v + Lreg

v , whereas the lifetime critic is optimised by min-
imising Llife

v . The regularisation loss Lreg
v is needed to prevent

catastrophic forgetting by regularising towards the old critic
predictions.

For the policy updates, we define the following losses:

Lepi
π = −ρk ·Aepi(sk, ak) · log πθ(ak | sk) (13)

Llife
π = −ρk ·Alife(sk, ak) · log πθ(ak | sk) (14)

Lent
π =

∑

a

πθ(a | sk) · log πθ(a | sk) (15)

Lreg
π =

∑

a

μ(a | sk) · log
μ(a | sk)
πθ(a | sk)

(16)

The loss Lepi
π is used to optimise the episodic return whereas

Llife
π is used to optimise the lifetime return. The entropy loss
Lent
π is used to maximise the entropy and thus prevent premature

convergence. Lreg
π forces π to imitate the past behaviour of μ to

prevent catastrophic forgetting. For meta-gradient RL we define
the inner and the outer loss as

Linner
π (θ, βent, βreg) = Lepi

π + Llife
π + βentLent

π + βregLreg
π (17)

Louter
π (θ) = Llife

π (18)

where η = {βent, βreg} are the hyperparameters that we opti-
mise during the meta-learning step. We perform m inner loop
updates using Linner

π before a meta-learning update using Louter
π

is performed.
In practice, CLEAR stores the generated episodes during

interaction in a replay bufferB. In our case, in every update step,
we retrieve the nrec most recent episodes Brec from B as well as
samplenold episodes fromB \ Brec. The retrieved trajectories are
then used for calculating the defined losses, where some losses
only use experience from Brec or Bold as shown in Table III. We
only use recent experience for the update of V life

ψ as we want
to approximate how much lifetime return we can expect from
the current time step onwards. The full algorithm is depicted in
Algorithm 3.

Note we can retrieve the original CLEAR algorithm by re-
moving the lifetime critic V life

ψ as well as the loss Llife
π in (17)

and performing only the inner loop updates.

OPEN HORIZON PPO

PPO is an on-policy actor-critic algorithm and hence learns
both a policy πθ and a critic Vψ . Given a trajectory τ =
(st, at, rt)

t=k+n
t=k generated by π, we define the one-step target

vk and generalized advantage A by

vk = rk + γkVψ(sk+1) (19)

A(sk, ak) =

k+n−1∑

t=k

(γtλ)
t−kδt (20)

where δt = rt + γtVψ(st+1)− Vψ(st) is the temporal differ-
ence term. We used transition-based discounting for unifying the
episodic and non-episodic case as introduced in (1). To view the
environment as both episodic and non-episodic (Section III-B),
we require a critic V epi

ψ that estimates episodic return and a critic

V life
ψ that estimates the lifetime return. Let vepi

k and Aepi denote
vk and A in (19) and 20 with γk+j = 0 if sk+j is a terminal
state, i.e. the episodic case. Let vlife

k and Aepi denote vk and A
in (19) and 20 with γk+j = γc > 0 for all states sk+j , i.e. the
non-episodic case. We define the following losses:

Lepi
v = (V epi

ψ (sk)− vepi
k )2 (21)

Llife
v = (V life

ψ (sk)− vlife
k )2 (22)

The episodic critic V epi
ψ then minimises Lepi

v , whereas the life-
time critic minimises Llife

v .
Regarding the policy updates, let hθ(s, a) =

πθ(a|s)
πθold (a|s)

, where

θold is the vector of policy parameters before we perform a policy
update. We define the losses

Lepi
π = min(hθ(sk, ak) ·Aepi(sk, ak)),

clip(hθ(sk, ak), 1− ε, 1 + ε) ·Aepi(sk, ak)) (23)

Llife
π = min(hθ(sk, ak) ·Alife(sk, ak)),

clip(hθ(sk, ak), 1− ε, 1 + ε) ·Alife(sk, ak)) (24)

Lent
π =

∑

a

πθ(a | sk) · log πθ(a | sk), (25)

where ε denotes a hyperparameter and clip(h, lower, upper)
clips the real value h if it exceeds the lower or upper bound.
The loss Lepi

π is used to optimise the episodic return whereas
Llife
π is used to optimise the lifetime return. The entropy loss
Lent
π is used to maximise the entropy and thus prevent premature

convergence. For meta-gradient RL we define the inner and outer
loss as

Linner
π (θ, βent) = Lepi

π + Llife
π + βentLent

π (26)

Louter
π (θ) = Llife

π (27)

where η = {βent} is the hyperparameter that we optimise during
the meta-learning step. We perform m inner loop updates using
Linner
π before a meta-learning update using Louter

π is performed.
In practice, our PPO implementation generates nepisodes

episodes using policy πθold and updates the critics and policy for
K epochs with the generated data. The full algorithm is depicted
in Algorithm 4.
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Algorithm 3: Open Horizon CLEAR.

Require: policy πθ, episodic critic V epi
ψ , lifetime critic V life

ψ , buffer B, meta-frequency m, meta-parameters η = {βent, βreg},
dialogues_until_update, nrec, nold, user set U

1: num_updates← 0
2: num_dialogues← 0
3: while lifetime not ended do
4: goal← Algorithm 1 � get a user goal
5: user ∼ U(U) � uniformly sample a user
6: τ = (s0, a0, r0, . . ., sT ) ∼ (π, user, goal) � create an episode
7: B.append(τ) � save experience in buffer
8: num_dialogues+ = 1
9: if num_dialogues mod dialogues_until_update = 0 then

10: Brec ← B[−nrec :] � get most recent dialogues from B
11: Bold ← RandomSample(B \ Brec, nold) � sample nold dialogues from B \ Brec

12: Update V epi
ψ to minimise Lepi

v + Lreg
v with (10) and 12 using Brec and Bold

13: Update V life
ψ to minimise Llife

v with (11) using Brec

14: Update πθ to minimise Linner
π with (17) using Brec and Bold � Optimise for episodic and lifetime return

15: num_updates + = 1
16: if num_updates mod m = 0 then � perform a meta update
17: Update βreg, βent to minimise Louter

π with (18) using Brec � Optimise meta parameters for lifetime return

Algorithm 4: Open Horizon PPO.

Require: policy πθ, episodic critic V epi
ψ , lifetime critic V life

ψ , meta-frequency m, meta-parameters η = {βent}, nepisodes, user
set U

1: while lifetime not ended do
2: B ← []
3: for dialogue = 1, 2, . . ., nepisodes do
4: goal← Algorithm 1 � get a user goal
5: user ∼ U(U) � uniformly sample a user
6: τ = (s0, a0, r0, . . ., sT ) ∼ (πold, user, goal) � create an episode
7: B.append(τ)
8: for k = 1, . . .,K � Run multiple epochs do
9: Update V epi

ψ to minimise Lepi
v using (21)

10: Update V life
ψ to minimise Llife

v using (22)
11: Update πθ to minimise Linner

π using (26) � Optimise for episodic and lifetime return
12: if k mod m = 0 then � perform a meta update
13: Update βent to minimise Louter

π using (27) � Optimise meta parameter for lifetime return
14: θold ← θ
15: B ← []

Note we can retrieve the original PPO algorithm by removing
the lifetime critic V life

ψ as well as the loss Llife
π in (26) and

performing only the inner loop updates.

DETAILED ALGORITHM SPECIFICATION

For the configurations of the DDPT model and CLEAR
algorithm, we use the same specification as given in [9]: for
the policy we use an input size and hidden size of 128 in both
transformer encoder and decoder. We use two heads for the
encoder and decoder, 4 transformer layers for the encoder and 2
for the decoder. The critics for lifetime and episodic return have
the same architecture as the transformer encoder, obtaining the

same input as the policy module plus an additional CLS vector
(as in RoBERTa). The output of the CLS vector is fed into a
linear layer to obtain the critic prediction.

For CLEAR, we use a learning rate of 0.001 for meta-learning
the hyperparameters and βreg = 0.1 and βent = 0.01 for the
regularization and entropy loss weights. When meta-learning,
we perform m = 4 update steps using the inner loss function
before doing one meta-update using the outer loss. We gen-
erate two dialogues before performing an update. We sample
nrec = nold = 32 when retrieving experience from the buffer.
The replay buffer size is set to 5000 and uses first-in first-out
once the buffer reached its capacity. For the V-trace algorithm,
the parameters ρ̄ and c̄ are set to 1.0.
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Fig. 7. Moving average success (and standard error) with time-window of 500 dialogues while interacting with the rule-based simulator and CLEAR as base
algorithm. The dialogues agents face changing user demands every 1000 dialogues and all domains are introduced from the beginning.

Fig. 8. Lifetime return for different simulator setups. We compare two different outer losses for optimizing the metaparameters.

For PPO we use learning rate of 0.1 for meta-learning the
hyperparameters and βent = 0.01 for the entropy loss weights.
The number of epochs is set to K = 5. When meta-learning,
we perform m = 5 update steps using the inner loss function
before doing one meta-update using the outer loss. For one PPO
epoch we generate nepisodes = 100 dialogues. We use λ = 0.0
and ε = 0.2 for the remaining PPO parameters.

We use the ADAM optimiser [49] with a learning rate of
5e-5 and 1e-4 for policy and critic modules, respectively. We
used a single NVIDIA A100 GPU for our experiments. The
experiments lasted around 10-15 h per lifetime, depending on the
algorithm and user simulator used. Our code was implemented
using PyTorch==1.10.2.

RESULTS WITH DIFFERENT USER DEMAND SETUPS

We here show results with different levels of user demand
changes given through different values of σ. We show average
success in a time-window of 500 for policies interacting with
the rule-based simulator of high initiative. Fig. 7 shows per-
formance for σ = 1.0 and σ = 2.0. We can observe that our
proposals outperform the baseline even in these highly varying
circumstances.

Meta-Learning Ablation

In Section III-B we proposed to use the lifetime return objec-
tive for meta-learning hyperparameters of the algorithm, which
meant using Alife

ψ in (7). We ran additional experiments using

Louter
π = Lepi

π + Llife
π (28)

for optimising the meta-parameters in CLEAR, which we termed
epi+life+meta(epi+life). The losses Lepi

π and Llife
π are given in

Fig. 9. Example for user action, dialogue state information, system action and
reward calculation. The user action selection depends on the user behaviour and
the user goal.

(13) and 14. We denote the usage of the outer loss as in (18)
as epi+life+meta(life). Fig. 8 shows the results, where we can
observe no statistical difference between the two methods. The
experimental setup is the same as explained in Section IV.
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interests focuses on emotions in task-oriented dialogue systems.

Benjamin Ruppik received the B.Sc. and M.Sc. degrees in mathematics
from the Faculty of Mathematics and Natural Sciences, University of Bonn,
Bonn, Germany, in 2015 and 2018, respectively, and the Ph.D. degree in low-
dimensional topology from the Max-Planck Institute for Mathematics, Bonn,
Germany, in 2022. He is currently a Postdoc with the Dialog Systems and
Machine Learning lab led by Prof. Milica Gašić at Heinrich-Heine-University
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Chapter 8

Conclusions and Future Work

In this chapter, we give a summary of the contributions of this thesis and point out possible
directions to continue. The objective of the research presented here was to provide more
sample efficient learning as well as investigate continual reinforcement learning for dialogue
policies.

8.1 Results

In Chapter 5, we addressed the problem of sample inefficiency in dialogue policy learning
due to the sparse reward given by task success or failure. We proposed an intrinsic reward
function called information gain that aids learning through more informative feedback, which
encourages the policy to gather information about the user goal. Our empirical study showed
that information gain leads to faster learning and better final policies. It moreover leads to
policies that asks the user for information in cases where it is necessary, which also gives a
better user experience.

In Chapter 6, we introduced the first study of continual reinforcement learning for
dialogue policies. We provided metrics that measure forward transfer to new domains
and catastrophic forgetting of already observed domains. Moreover, we proposed a novel
architecture called dynamic dialogue policy transformer (DDPT) which is specifically designed
for continual RL. DDPT addresses the continual RL challenges in dialogue that arise from
the introduction of new domains, namely growing state and action spaces and forward
transfer. DDPT achieves this by leveraging an encoder-decoder Transformer for processing
dynamic input and output, a pre-trained language model for state information and action
embeddings, effective state space reduction by hard-attention masking and a novel domain
gate for fast forward transfer to new domains. Our empirical study revealed that DDPT
achieves significant forward transfer to new domains and prevents catastrophic forgetting of
already observed domains. This is obtained without any growth in neural network parameter
size and thus fulfills important points in the continual learning desiderata.

In Chapter 7, we challenged the common continual learning setup for dialogue where
domains are only seen for a certain period of time. We proposed realistic environments for
continual RL of dialogue policies (RECORD), a generalized, controllable, and flexible continual
learning framework that aims to reflect the most important challenges in realistic continual
learning for dialogue policies. RECORD models multi-domain dialogues, changing user
demands over time, multiple user behaviors, and reoccuring domains. In order to learn in
challenging continual learning environments, we proposed the usage lifetime return for more
robust learning and meta-gradient RL for optimizing the hyperparameters of the underlying
RL algorithm. We conducted a multitude of experiments with different user behaviors and
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continual learning setups that proved the flexibility and controllability of RECORD and
superiority of leveraging lifetime return and meta-gradient RL.

Our results warrant a more widespread usage of the proposed ideas. The underlying
idea of information gain to reward behavior that gathers information or resolve uncertainty
is general and applicable to any task where information needs to be retrieved from the
interlocutor. Similarly, the usage of lifetime return as an additional objective for maximization
can be utilized for any reinforcement learning in episodic environments to potentially
increase the stability and improve the performance. Lastly, since our ideas in DDPT were
inspired by the way an operator would explain the task, we hope that they transfer to
different setups as well (we give an example for language models in the following section).

8.2 Future Directions

The field of continual RL for dialogue policy optimization is still in its infancy and far from
being solved. Due to the large number of challenges that a task-oriented dialogue system
encounters in its lifetime, there are many possible future directions.

Large Scale Continual Learning Our study on continual RL was conducted with five
domains of the MultiWOZ environment (Budzianowski et al., 2018). We chose this en-
vironment due to its unique combination of multi-domain dialogues, a database, and a
success evaluation component required for our research. This was sufficient for the first
investigations of continual RL for dialogue policies. However, considering the extensive
array of potential domains, the logical progression involves expanding our investigation to
encompass a broader spectrum of domains. To this end, the domains of MultiWOZ can be
extended by using additional domains of other datasets such as SGD or Task-Master (Byrne
et al., 2021; Rastogi et al., 2020). The challenge in this expansion lies in the creation of suitable
databases and success evaluation mechanisms for these supplementary datasets. We regard
this as a short-term future direction.

Learning to Adapt Continual learning requires constant adaptation to new circumstances.
In our study, we used CLEAR (Rolnick et al., 2019) that leverages recent experience for
adaptation of the neural network parameters and meta-gradient RL (Xu et al., 2018) for
adaptation of the hyperparameters. An interesting next step is to investigate further methods
for fast adaptation in our proposed RECORD framework. To this end, promising methods
are given by exploration (Amin et al., 2021; Ladosz et al., 2022), where explorative actions
can be chosen in the right situations to find better solutions, which is especially important
if a new domain is introduced. Another line of work that aids fast adaptation is episodic
memory (Fortunato et al., 2019; Pritzel et al., 2017) which is inspired by the hippocampus in
the brain (Lengyel and Dayan, 2007). Episodic memory is an additional module that can be
updated quickly, in contrast to the dialogue policy that has to be updated based on gradient
descent.

Reward Learning Within our RECORD framework, we make the assumption that
rewards are consistently provided by the environment, namely the user. Once a dialogue
system is deployed in the real world, it might be undesirable to request feedback from
the user after every conversation. Consequently, an expansion of the RECORD framework
could encompass the consideration of scenarios where rewards are not observed during
certain conversations. This extension paves the way for exploring methods for intrinsic
reward learning. Intuitively, a system that has gained enough experience should be able to
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build its own intrinsic reward function. Possible methods for investigation include meta-
learning intrinsic rewards (Zheng et al., 2020, 2018) or imitation learning on sub-optimal
demonstrations (Zhu et al., 2022c). In that realm, our proposal information gain (Chapter
5) can be potentially utilized as additional regularization objective for the learnable reward
function in order to enhance training stability as information gain directly aids in learning
how to solve the task at hand.

Large Language Models Large language models (LLMs) such as ChatGPT or Llama
(Touvron et al., 2023) have disrupted the field of dialogue systems due to its human-likeness
and general purpose capabilities. The DDPT architecture in Chapter 6 was inspired by the
way an operator would explain and act upon a novel task, namely, relying on descriptions
and focusing on the necessary information. This idea is directly applicable to LLMs: we filter
out unnecessary information of the state as in DDPT, incorporate the descriptions of every
remaining information into the LLM input (instead of embedding it via a language model)
and provide descriptions for every action. We can furthermore simulate the domain gate
of DDPT by asking the LLM to first specify the domain to talk about, which subsequently
reduces the amount of action descriptions we need to provide. This shows in particular
that the ideas presented for DDPT are more generally applicable and furthermore defines a
natural next step for investigation. ChatGPT has been used only recently as a dialogue policy
to generate semantic actions (Kwan et al., 2023) and achieved a success rate of around 70%
on a rule-based simulator for MultiWOZ (Zhu et al., 2020), showing its potential to dialogue
policy applications.

The utilization of LLMs becomes particularly interesting within the framework of con-
tinual RL for dialogue policies. While DDPT demonstrated substantial knowledge transfer
to novel, but related, domains, achieving this becomes challenging when new domains
significantly differ from what has already been encountered. Given the versatile capabilities
of LLMs, they can assist in selecting actions during the early stages after a novel domain has
been introduced, where the dialogue policy performance is not yet sufficient. When lever-
aging off-policy learning, such as in the CLEAR algorithm, the dialogue policy can directly
learn from the experiences generated by the LLM, eventually surpassing the LLM’s initial
zero-shot performance. This is an interesting symbiosis between LLMs with general-purpose
capabilities and specialized task-specific experts that can be efficiently trained.

8.2.1 The Future of Task-oriented Dialogue

Dialogue systems require interpretability, controllability and flexibility. LLMs excel at a wide
range of tasks with impressive zero-shot capabilities, where their natural language interface
and open-domain knowledge enable great flexibility. The components in a task-oriented
dialogue system, on the other hand, are limited to their pre-defined, yet expandable, ontology.
This reduced flexibility comes with the advantage of being interpretable and controllable, as
for instance specific actions can be forbidden depending on the situation at hand. In addition,
these components are typically smaller and hence meet memory requirements as well as
being more efficient during training and testing. Moreover, current studies showed that
LLMs can not outperform expert components in a task-oriented dialogue system that were
trained on task-specific data such as dialogue state trackers or dialogue policies (Heck et al.,
2023; Hudeček and Dusek, 2023; Kwan et al., 2023). There will be most likely a symbiosis
between the two approaches. LLMs are a great option in cases where the modular system is
uncertain about how to act (due to a new domain for instance) or when the user provides
an out-of-ontology query. Moreover, LLMs can act as synthetic data generators for more
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lightweight models (Li et al., 2023; Rosenbaum et al., 2022). The modular dialogue system, on
the other hand, can excel at fine-grained tasks due to being an efficiently trained task-specific
expert.

Regardless of the future composition of a dialogue system, the unresolved issue remains
regarding the definition of an optimal reward function for training such a system. It is
hypothesized that reward is enough to learn behavior that exhibits most if not all of intelligent
abilities, such as learning, perception, social intelligence, language, etc. (Silver et al., 2021).
Humans, for instance, may implicitly optimize their behavior for the survival of the species
and reproduction, which is nevertheless challenging to optimize in practice. It is thus more
plausible that humans optimize a different, practical reward function leading to similar
results. The crucial question arises as to whether there exists a comparable reward for
dialogue systems to optimize and what form it might take. This reward function must be
in some form interpretable, ensuring the predictability of the resulting agent’s behavior,
which is essential for safety considerations. Furthermore, the necessity of a single reward
function in practice versus the requirement for multiple rewards remains unclear. As
previously explained, existing dialogue policies are trained based on task success, a sparse
and stringent signal that assesses decisions within individual dialogues. Currently, large
language models (LLMs) are trained using human preferences (Ziegler et al., 2019), yielding
impressive outcomes (Ouyang et al., 2022). However, the reward models derived from
these preferences often exhibit imperfections, giving rise to significant challenges, including
human bias, misgeneralization, and potential reward hacking, where the model learns
undesirable behavior (Casper et al., 2023). The definition of an optimal reward function,
which potentially changes throughout continual learning, is still an open research area in
task-oriented dialogue and beyond.

In the realm of continual learning, humans are able to robustly adapt to new circumstances
often with only a few trials, while deep RL needs thousands of interactions for achieving the
same task (Barreto et al., 2020). The challenge remains unresolved as to how this human-
like adaptability can be instilled in artificial intelligence, maintaining plasticity in continual
learning and determining the essential learning components. Furthermore, numerous studies
on continual learning predominantly address the issue of catastrophic forgetting, which is
essential to prevent. Nevertheless, forgetting over time might be a future requirement that
offers potential advantages such as releasing capacity for upcoming tasks or facilitating the
removal of undesired behavior or outdated knowledge. Related to this is the problem of
how specific knowledge, facts, or behavior can be changed in a neural network without
affecting the remaining parts (Jang et al., 2022; Sinitsin et al., 2020). The future bears many
open problems and challenges for task-oriented dialogue systems in order to achieve human-
like abilities. Nevertheless, the recent advancements in reinforcement learning and large
language models promise a thriving future to come.
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Appendix A

Supplementary Proofs

A.1 Deep Learning

Theorem 2. For i ∈ Z, let the positional encoding p(i) ∈ Rd be defined as

p(i) = [sin(w0i), cos(w0i), ..., sin(wki), cos(wki), ..., sin(wd/2−1i), cos(wd/2−1i)], (A.1)

wk =
1

100002k/d (A.2)

The norm of the positional encoding p(i) ∈ Rd is given by

||p(i)||2 =

√︃
d
2

. (A.3)

Moreover, the distance between two positional encodings is symmetric, i.e. for every n ∈ N, it
holds that

||p(i+n) − p(i)||2 = ||p(i−n) − p(i)||2. (A.4)

Proof. Since sin2(x) + cos2(x) = 1, we have

||p(i)||2 =
√︂

sin2(w0 · i) + cos2(w0 · i) + ... + sin2(w d
2−1 · i) + cos2(w d

2−1 · i) (A.5)

=

√︃
d
2

. (A.6)

In order to prove the symmetry, we use the addition theorem cos(x− y) = cos(x) cos(y)+
sin(x) sin(y) and the symmetry property cos(x) = cos(−x). We calculate

||p(i+n) − p(i)||22 (A.7)

= ||p(i)||22 + ||p(i+n)||22 − 2
d/2−1

∑
k=0

[sin(wki) sin(wk(i + n)) + cos(wki) cos(wk(i + n))] (A.8)

= d− 2
d/2−1

∑
k=0

[cos(wki− wk(i + n))] (A.9)

= d− 2
d/2−1

∑
k=0

[cos(−wki + wk(i + n))] (A.10)
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= d− 2
d/2−1

∑
k=0

[cos(wki− wk(i− n))] (A.11)

= d− 2
d/2−1

∑
k=0

[sin(wki) sin(wk(i− n)) + cos(wki) cos(wk(i− n))] (A.12)

= ||p(i−n) − p(i)||22 (A.13)

Theorem 3. For any n, i ∈ Z, there exists a matrix M (n), which only depends on n but not on i,
such that

p(i+n) =M (n)p(i). (A.14)

Proof. According to the addition theorems of sin and cos, we obtain for every wk

sin(wk(i + n)) = sin(wki) · cos(wkn) + sin(wkn) · cos(wki), (A.15)
cos(wk(i + n)) = cos(wki) · cos(wkn)− sin(wkn) · sin(wki), (A.16)

which can be rewritten in matrix notation as
[︃

sin(wk(i + n))
cos(wk(i + n))

]︃
=

[︃
cos(wkn) sin(wkn)
− sin(wkn) cos(wkn)

]︃ [︃
sin(wki)
cos(wki)

]︃
(A.17)

If we define

Φ
(n)
k =

[︃
cos(wkn) sin(wkn)
− sin(wkn) cos(wkn)

]︃
(A.18)

the identity in Equation A.14 follows for the matrix

M (n) =

⎡
⎢⎢⎢⎢⎣

Φ
(n)
1 0 · · · 0

0 Φ
(n)
2 · · · 0

· · · · · · · · · · · ·
0 0 · · · Φ

(n)
d
2

⎤
⎥⎥⎥⎥⎦

(A.19)

A.2 Reinforcement Learning

In this section, we give a proof for the policy improvement theorem (Section 3.4.1) and the
policy gradient theorem (see Theorem 1) using the Performance Difference Lemma. For
states s0, s ∈ S and action a ∈ A, we first define the discounted occupancy measure as

dπ(s) = (1− γ)
∞

∑
t=0

γt pπ(St = s), (A.20)
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dπ(s, a) = (1− γ)
∞

∑
t=0

γt pπ(St = s, At = a) = dπ(s) · π(a|s), (A.21)

dπ
s0
(s) = (1− γ)

∞

∑
t=0

γt pπ(St = s|S0 = s0), (A.22)

dπ
s0
(s, a) = (1− γ)

∞

∑
t=0

γt pπ(St = s, At = a|S0 = s0) = dπ
s0
(s) · π(a|s), (A.23)

where pπ(St = s, At = a) is the probability that the pair (s, a) occurs in time-step t when
following policy π. From the definitions it follows immediately that

dπ(s, a) = ∑
s0

p0(s0) · dπ
s0
(s, a). (A.24)

Theorem 4 (Performance Difference Lemma). Let π and π′ be two policies and s0 ∈ S . We then
have

Vπ(s0)−Vπ′(s0) =
1

1− γ
Es,a∼dπ

s0
[Aπ′(s, a)] (A.25)

Proof.

Vπ(s0)−Vπ′(s0) = Eπ[
∞

∑
t=0

γtrt|S0 = s]−Vπ′(s0) (A.26)

= Eπ[
∞

∑
t=0

γt(rt + γVπ′(St+1)− γVπ′(St+1)|S0 = s]−Vπ′(s0) (A.27)

= Eπ[
∞

∑
t=0

γt(rt + γVπ′(St+1)−Vπ′(St)|S0 = s] (A.28)

= Eπ[
∞

∑
t=0

γt(E[rt + γVπ′(St+1)]−Vπ′(St)|S0 = s] (A.29)

= Eπ[
∞

∑
t=0

γt(Qπ′(St, At)−Vπ′(St)|S0 = s] (A.30)

= Eπ[
∞

∑
t=0

γt · Aπ′(St, At)|S0 = s] (A.31)

= ∑
τ

pπ(τ|S0 = s)
∞

∑
t=0

γt · Aπ′(st, at) (A.32)

=
∞

∑
t=0

∑
τ

∑
s,a

pπ(τ, St = s, At = a|S0 = s)γt · Aπ′(s, a) (A.33)

=
∞

∑
t=0

∑
s,a

∑
τ

pπ(τ, St = s, At = a|S0 = s)γt · Aπ′(s, a) (A.34)

= ∑
s,a

∞

∑
t=0

γt pπ(St = s, At = a|S0 = s) · Aπ′(s, a) (A.35)

=
1

1− γ
Es,a∼dπ

s0
[Aπ′(s, a)] (A.36)
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Corollary 4.1. Let J(π) = Eπ[∑∞
t=0 γtRt]. For policies π and π′, the following holds:

J(π)− J(π′) =
1

1− γ
Es,a∼dπ [Aπ′(s, a)] (A.37)

Proof. The corollary follows from Theorem 4 since

J(π)− J(π′) = ∑
s0

p0(s0) · [Vπ(s0)−Vπ′(s0)] (A.38)

= ∑
s0

p0(s0) ·
1

1− γ
Es,a∼dπ

s0
[Aπ′(s, a)] (A.39)

=
1

1− γ
Es,a∼dπ [Aπ′(s, a)] (A.40)

Theorem 5 (Policy Improvement Theorem). Given arbitrary policies π and π′ such that

∑
a

π′(a|s)Qπ(s, a) ≥ Vπ(s) ∀s ∈ S , (A.41)

then π′ is at least as good as π, i.e.

Vπ′ ≥ Vπ(s), ∀s ∈ S . (A.42)

Proof. We first note that

∑
a

π′(a|s)Aπ(s, a) = ∑
a

π′(a|s)Qπ(s, a)−∑
a

π′(a|s)Vπ(s) (A.43)

= ∑
a

π′(a|s)Qπ(s, a)−Vπ(s) ≥ 0 (A.44)

by our assumption. Using Theorem 4, we can conclude that for every s0 ∈ S

Vπ′(s0)−Vπ(s0) =
1

1− γ
Es,a∼dπ′

s0
[Aπ(s, a)] (A.45)

=
1

1− γ
Es∼dπ′

s0
[∑

a
π′(a|s)Aπ(s, a)] ≥ 0. (A.46)

Corollary 5.1 (Policy Improvement Theorem). Let π be a policy and define

π′(s) = arg max
a

Qπ(s, a). (A.47)

The policy π′(s) is then at least as good as π, i.e.

Vπ′ ≥ Vπ(s), ∀s ∈ S . (A.48)
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Proof. We only need to prove the assumption of Theorem 5. We have for all s ∈ S

∑
a

π′(a|s)Qπ(s, a) = Qπ(s, arg max
a

Qπ(s, a)) = max
a

Qπ(s, a) ≥ Vπ(s) (A.49)

since Vπ(s) = ∑a π(a|s)Qπ(s, a) ≤ ∑a π(a|s)maxa Qπ(s, a) = maxa Qπ(s, a).

Theorem 6 (Policy Gradient Theorem). Let πθ be a policy parameterized by parameters θ. Let
J(θ) = J(πθ) = Eπ[∑∞

t=0 γtRt]. The gradient of J(θ) is given by

(1− γ)∇θ J(θ) = Es,a∼dπ [∇θ ln πθ · Aπθ(s, a)] (A.50)

Proof. By the definition of the gradient, we have

(1− γ) · ∇θ J(θ) = (1− γ) · lim
||h||→0

J(θ + h)− J(θ)
||h|| (A.51)

= lim
||h||→0

1
||h||Es,a∼dπθ+h [Aπθ(s, a)] (A.52)

= lim
||h||→0

1
||h||∑s,a

dπθ+h(s) · πθ+h(a|s)Aπθ(s, a) (A.53)

= lim
||h||→0

1
||h||∑s,a

dπθ+h(s) · [πθ+h(a|s)− πθ(a|s) + πθ(a|s)]Aπθ(s, a) (A.54)

= lim
||h||→0

∑
s

dπθ+h(s) ·∑
a

πθ+h(a|s)− πθ(a|s)
||h|| Aπθ(s, a) + πθ(a|s)Aπθ(s, a)

(A.55)

= lim
||h||→0

∑
s

dπθ+h(s) ·∑
a

πθ+h(a|s)− πθ(a|s)
||h|| Aπθ(s, a) (A.56)

= ∑
s

lim
||h||→0

dπθ+h(s) ·∑
a

lim
||h||→0

πθ+h(a|s)− πθ(a|s)
||h|| Aπθ(s, a) (A.57)

= ∑
s

dπθ(s) ·∑
a
∇θπθ · Aπθ(s, a) (A.58)

= ∑
s

dπθ(s) ·∑
a

πθ(a|s)∇θ ln πθ · Aπθ(s, a) (A.59)

= Es,a∼dπθ [∇θ ln πθ · Aπθ(s, a)] (A.60)

In Equation A.52 we used Corollary 4.1. Equation A.56 followed since

∑
a

πθ(a|s)Aπθ(s, a) = ∑
a

πθ(a|s)[Qπθ(s, a)−Vπθ(s)] = Vπθ(s)−Vπθ(s) = 0. (A.61)

Lastly, Equation A.58 followed since dπθ(s) is continuous in θ and hence

lim
||h||→0

dπθ+h(s) = dπθ(s). (A.62)
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